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1 Introduction

In this document we’ll consider the many different aspects of units. Since the author is from the United States
where the country is still afraid to go metric, many (most?) of the examples will be using the non-metric units.
We’ll talk about conversion of units, definitions of units, dimensional analysis, and many other things.

2 What Are Units?

In arithmetic and algebra we’re used to combining numbers in various ways, but as soon as we consider a real
world problem, units come into play. As we all know, you can’t add apples and oranges, and that’s what units are
about: to make sure that the mathematical operations make physical sense. The nice thing, though, is that you
can use mathematical techniques to make sure the units make sense.

The great thing about units is that equations like the simple, “distance = rate times time”:

d=rt

is true as long as the distance is some length, the rate is some velocity, and the time is some time. If the units
of r are furlongs per fortnight, and the time is in milliseconds, the resulting distance makes sense, but has the
somewhat unusual units “furlong-milliseconds per fortnight.” Of course some work needs to be done so that
these units make sense to us, but, hard as they are to understand, they are correct.

In this paper we’ll chiefly look at units for physical measurements, but the same techniques work for any
types of units: dollars, mouse clicks, candy bars, and even apples and oranges.

3 Unit Conversion

In this section we’ll see how to deal with units like “furlong-milliseconds per fortnight,” but we’ll begin with
simpler examples.

When two units basically measure the same thing, conversion is easy. For example, miles, feet, kilometers,
and light years all measure the same thing; namely, length. If you know the conversion factor, you just need to
multiply or divide by that to perform the conversion.

There is a totally naive approach. For example, if you know that 1 kilometer equals 0.621371 miles and you
wonder long long a marathon (26.21875 miles) is in kilometers, you need to multiply or divide by 0.621371.
Since you know that miles are longer than kilometers, there will be more kilometers than miles, so we need to
divide 26.21875 by 0.621371 to make it bigger. (Multiplying by a number smaller than 1 would make it smaller.
Thus a marathon’s length is 26.21875/0.621371 = 42.194988 kilometers.

This method works fine if you are quite familiar with the relative sizes of the two units in question, but if
you’re a little vague about the relative lengths of a mile and a kilometer, this can get you into trouble. Here is a
completely mechanical way to do unit conversions with almost no chance of error. The beauty of this method is
that it also works for more complex transformations, like miles/gallon to kilometers/liter.



It is based on the mathematical idea that you can multiply anything by 1 and that will leave it unchanged.
Using the miles to kilometers problem, we can convert the equation:

1 kilometer = 0.621371 mile

to either of the following':
1 kilometer 1 0.621371 mile
0.621371 mile 1 kilometer ’
giving us two different versions of the number 1. If we have a distance in miles, and multiply it by the version of
1 on the left, the “miles” in the numerator and denominator will cancel, leaving only kilometers. If we multiplied

by the version of 1 on the right, it would still be technically correct, but the units would be:

mile?
kilometer’
which isn’t particularly useful.
One nice result of this completely mechanical conversion is when it is harder to see whether the result will

be larger or smaller in the new units. As an example, suppose gasoline costs 1.2 euros per liter and you’d like to
see what that amounts to in dollars per gallon. Suppose the conversion factors are as follows?:

l1dollar = 0.92euro
3.78541 liter.

1 gallon

When we have two equal quantities, we can write the 1 as a fraction with either of them in the numerator, so
for conversion, we simply choose the form we need. In our example, we begin with the euro-per-liter value and
convert it to its dollar-per-gallon form. Since we begin with “euro” in the numerator, we’ll need to multiply the
dollar-euro fraction with the “euro” in the denominator, and vice-versa for the gallon-liter fraction. The result

we need s thus: 1 doll 3.78541 lit doll
e}lro. ollar 3. er _ 4 ggrgg doHar
liter 0.92 euro 1 gallon gallon

You can do a conversion gradually if you know a series of relationships to get you there. As a somewhat
bizarre example, suppose you want to know how many centimeters (cm) there are in a mile (mi). You know there
are 2.54 centimeters per inch (in), there are 12 inches in a foot (ft) and 5280 feet in a mile. Here’s the conversion:

5280 ft 12in 2.54 cm

1 mi
mi ft in

=160934.4 cm.

If you don’t have access to the internet or other sources of information, you can memorize just a few conver-
sion factors and using only those, be able to do a large number of conversions. The author knows the relations
between inches, feet, yards, miles, and also between any of the metric lengh units. With one additional fact, that
2.54 cm is 1 inch, all possible conversions are possible, with the correct string of calculations. If you know that
1 liter is about 1.057 quarts, you can convert most volumes, et cetera. Similarly, 1 kilogram equals about 2.2
pounds makes most masses® interconvertible.

Note that when we use English to speak about these relationships sometimes we use the singluar and sometimes plural (“one mile per
gallon,” versus “two miles per gallon”). The singular/plural difference is due to English, not the units, so we will always write units in a
singluar form here.

2Gallons and liters are at a fixed relationship, but the dollar-to-euro value varies.

3Well, thinking of a pound as a mass, at least.



4 Unit Sizes and Origins

We humans aren’t great at understanding very large or very tiny numbers. That’s why it’s easiest to understand
measurements when the units are in not too big a range around one. In fact, it’s probably better to have measure-
ments that are larger than one; it’s not too hard to think about 150 feet, and much more difficult to think about
what 0.0066666 feet means. (The 0.0066666 is about 1/150 which is about as far below 1 as 150 is above.)

Thus we talk about road trips in miles, heights of people in inches, distances between stars in light-years or
parsecs, astronomical unit, and distances within an atom in angstroms (A).

Long ago when it was not critical to obtain exact results, most of the units were based on practical and
somewhat arbitrary considerations. A “foot” might be the length of the current king’s foot. An acre was the
amount of land that could be plowed in one day by a yoke of oxen, a mile was a thousand steps, and so on.

S Physical Measurements

It is somewhat amazing how many of the things measured by physicists and engineers have dimensions that are
obtained from some basic types of unit. We’ll consider three of them: length, mass, and time*. All length units
are “the same” in the sense that they measure the same sort of thing and they’re easily converted to other units via
a multiplication by a constant that measures the ratios of the sizes of the units. To convert from miles to yards,
multiply by 1760 and so on. The same is true for the other units as well.

5.1 Unit Types and Derived Units

There is, however, something very different about the unit types. It makes no sense to convert feet to seconds or
kilograms to miles. But there is a tremendous value in being able to produce compound units. For now, let’s not
worry about the particular unit of length, mass, or time we are using, and we’ll just use L, M, and T, respectively,
to stand for that sort of unit. These fundamental units are called “base units.”

If we wish to talk about area, for example, the unit type will be L?: a length times a length. Every area will
have that sort of unit. Almost always we square the same sort of unit, as in “square inches,” “square miles,” et
cetera. An area unit like “acre” has L2-type units although the name buries that fact. One of the original official
descriptions of an acre (after the oxen-work-based definition) was an area on land that was one chain (22 yards)
long and one furlong (220 yards) wide, so it is of type L? although the two different lengths in the definition have
different units.

Unit types that involve combinations of the base units are called “derived units.”

Similarly, volume has units of type L3, usually cubic feet or cubic inches or similar, but water is often
measured in a more convenient form as gallons or acre-feet. Acre-feet is convenient since if your 3-acre lake
gains one foot in depth, you’ve added 3 acre-feet of water to it; it’s a block of water 1 chain by 1 furlong by 1
foot, which gives the three L’s in the L3 form.

Units like gallons or barrels are really volumes and can be converted to cubic inches or whatever. They
intrinsically have units of type L3.

Here are some compound unit types constructed from the primitive unit types:

e L2 Area
e L3: Volume
e LT ': Velocity—change of distance per unit of time.

e LT~2: Acceleration—change of velocity per unit of time.

“4There are others, like charge, but we’ll just use these three for our examples.



e LT3: Jerk—change of acceleration per unit of time.

e MLT~': Momentum—mass times velocity.

e M LT~2: Force—mass times acceleration.

e M L~'T~2: Pressure—force per unit area.

e M L~3: Density—mass per unit volume.

e M L2T—2: Work (or Energy)—force applied over a distance.
e ML>T—3: Power—energy used per unit of time.

e T~ !: Frequency—number of occurrences per unit of time.

As an example, let’s check that energy always has units of the form M L? /T?. Here are a few formulas used
to compute energy:

e The potential energy of an object is given by mgh, where m is the mass, g is (the acceleration of) gravity,
and h is the height above the ground. A mass, an acceleration and a length multiply to give the correct
units.

e You pay your electric (energy) bill in (kilo)watt-hours. A watt is a measure of power and an hour, of time.
Again, the product of those unit types yields an energy.

e Einstein said that £ = mc?

be energy units.

. m is mass and c is a velocity (the velocity of light). The product works out to

The nice thing about thinking about units in this way is that the formulas of physics work no matter what the
units are. To take an example from elementary school mathematics, consider the formula:

d=v-t,

distance equals velocity multiplied by time. v could be measured in miles/hour and time in years and the formula
is still true. A brute-force multiplication of those values would give you a distance in terms of mile-(year/hour).
The unit (year/hour) has no unit type, but if we know the number of hours in a year’:

1 year = 8760 hour,

We can multiply our answer by:
1— 8760 hour

year

and obtain the result in miles.

One final thing: in what follows we will be a little sloppy with the English “pound” weight. A pound is a
weight, which is a force, not a mass, so to be precise, there is no way to convert between kilograms and pounds,
although you see the conversion:

2.2 pounds = 1 kilogram

in many places.

A mass will weigh different amounts on different planets, but will always have the same mass. When we
are being sloppy, we may consider a pound to be that mass which has a weight of one pound on Earth. See
Section 5.3 for the technically correct way to handle mass in the English system.

S5This is a 365-day year.



5.2 SI Units: The Metric System

The “SI” stands for “Systéme International (d’unités).” It uses a particular specific unit for each of the unit types.
There are seven base units (in the previous section we considered only three) which are: length, mass, time,
electric current, thermodynamic temperature, amount of substance (just a number), and luminous intensity. The
units used for those unit types are, respectively, the meter, kilogram, second, ampere, degree Kelvin, mole, and
candela. It’s an extension of the MKSA system (meter, kilogram, second, ampere)®.

For now we’ll ignore all but the first three types, but the system gives names for most of the derived units.
Here are some examples, where we will use the forms “kg” for kilogram, “m” for meter, and *“s” for second:

e lkg-m- s~2: Newton; unit of force.

1

e 1kg-m™'.s~2: Pascal; unit of pressure.

e 1kg-m?-s~2: Joule; unit of energy (or work).
e 1kg-m?.s~3: Watt; unit of power.

There are lots of others.

The system also defines the various multiples of 10 used to modify the units. For example, we call 1000
watts a “kilowatt,” and a “kilo” prefix always means “multiply by 1000,” “micro” means “divide by 10000007,
et cetera. Here’s a complete list of the prefixes for SI units:

Multiplier \ Prefix H Multiplier \ Prefix ‘

10t deca | 1071 deci
102 hecto || 1072 centi
103 kilo 1073 milli
106 mega || 1076 micro
10° giga 107° nano
10*2 tera 10-12 pico
101° peta 10710 femto
108 exa 1018 atto
102t zetta || 102! zepto
10%4 yotta || 10724 yocto

So in 20 grams of hydrogen gas, there are about 10 moles of Hy molecules, or 10 - 6.023 x 1023 = 6.023 x
10%* = 6.023 yotta molecules.

The metric system seems way more logical than the English system in that the basic units differ in size by
factors of 10 in every case. There is one example from the English system that is much older (13*" century) that’s
equally good. It is the system for liquid measure:

2 gills = 1 chopin 2 demibushels = 1 bushel or 1 firkin
2 chopins = 1 pint 2 firkins = 1 kilderkin
2 pints = 1 quart 2 kilderkins = 1 barrel
2 quarts = 1 pottle 2 barrels = 1 hogshead
1 pottles = 1 gallon 2 hogsheads = 1 pipe
2 gallons = 1 peck 2 pipes = 1 tun
2 pecks = 1 demibushel

6 Another system of units is also popular if you’re working with smaller measurements: CGS, standing for “centimeter, gram, second.”



5.3 The Slug

In English units, we measure weight in pounds, but a pound is a force, not a mass. So questions like, ”What would
a man who weighs 150 pounds on Earth weigh on Jupiter?” make sense. A force is a mass times an acceleration
(so in the example above, the difference in weights is due to the difference in the gravitational accelerations
between Earth and Jupiter).

The English unit of mass is called a “slug” and in terms of weight (in pounds, on Earth) the slug’s units are:

1b 2
ft -

Since the gravitational acceleration on Earth is about 32.17 that makes a slug equal to 14.59 kg.
Thus we can easily, if we wish, convert all our energy values into slug-furlongs-squared per fortnight-squared.

5.4 Temperature

An early measurement of temperature was proposed by Daniel Fahrenheit in 1724. It defined 100 degrees as
roughly human body temperature and zero degrees as the coldest temperature he could achieve in a lab (a freezing
brine of saturated ammonium chloride). Body temperature isn’t exactly constant and much lower temperatures
a achievable so the definition eventually became defined by 32° and 212° are the temperatures at which water
freezes and boils at standard pressure at sea level.

Celsius temperatures used the same two points, but defined them as 0° and 100°. A linear conversion is a little
messier than with most units, since the zero points don’t match. (This isn’t a problem with most measurements
since zero feet is the same as zero meters is the same as zero light-years.) In any case, here’s the conversion:

C=2(F—3),
9
where C' and F’ are the temperatures in Celsius and Fahrenheit, respectively.

A more modern and easier to measure zero-point for temperatures Celsius are based not on the freezing point
at standard pressure at sea level, but on the triple point of pure water: the temperature/pressure at which ice,
liquid water, and water vapor co-exist.

Some physical experimentation indicates that the ideal gas law relating the temperature 1T' (Celsius), the
pressure P, the volume V' and the number of moles of the gas n are related as follows with an appropriately
chosen constant R:

pV =nR(T + 273.15).

This sort of indicates that the zero point of temperature was chosen wrong, and in fact, we define a temperature
of absolute zero as —273.15° Celsius.

If we measure temperature from absolute zero and use steps equal in size to the steps in the Celsius scale we
call this temperature the Kelvin scale at which absolute zero has temperature zero and water freezes at 273.15°.
If the temperature is measured in degrees Kelvin, the ideal gas law looks more reasonable:

pV =nRT.

If you prefer Fahrenheit-sized degrees, there’s a corresponding Rankine temperature scale where zero degrees
is again absolute zero and water freezes at 459.67°. The ideal gas law is the same, but with a different constant
R to account for the differences in degree size.



5.5 Angle

Most measures of angle simply describe the angle in terms of a fraction of a complete turn. The common 360°
measure for a complete turn allows us to break it into 360 equal parts. There’s nothing magical about 360; it’s
just that this number is divisible by a lot of useful numbers: 1,2,3,4,5,6,8,9,10,12,15,18,20,24,.. ., so we

can talk about a half, a third, a fourth, ..., of a circle as whole numbers of degrees. Also, there’s a possibility
that the 360 is related to the number of days in a year (which wasn’t measured all that accurately thousands of
years ago).

The division of degrees into minutes and seconds (60*" and 3600*" of a degree) is also ancient, and 60 has
many of the nice divisibility properties of 360. In fact, sometimes the seconds are divided into 60" which are
called “tertias.”

Of course many methods are used for geographic coordinates (latitude and longitude) sometimes it’s just de-
grees and decimals of a degree, like 122.71231°, sometimes it’s degrees, minutes, and seconds, like 122° 42" 31”
and sometimes (as for example what’s used in the Geocaching game) a mixture: 122° 42.1234’.

To interconvert decimal versions of angles and the degrees-minutes-seconds versions is not too hard. Let’s
do it both ways. If we need to convert 47.1234°, we know the answer will still have 47° so we just need to work
on the .1234 part:

1234 = m/60,

or m = 60 - .1234 = 7.404, so we have 7 minutes with a fraction of .404 minutes. Just do the same thing to the
fraction of minutes to obtain seconds:
404 = s/60,

s0 s = 24.24. The full conversion, therefore, is: 47.1234° = 47° 7' 24.24".

Let’s do the conversion in the opposite direction and we’ll begin with our previous answer so we’ll have a
check of our results. Convert 47.1234° = 47° 7’ 24.24" to degrees with a decimal part.

The (fractional) part of the minutes is obtained by dividing the number of seconds by 60, giving 24.24 /60 =
.404 minutes. Add this to the 7 minutes we have to obtain 7.404 minutes. That’s 7.404/60 = .1234 of a degree,
so the final result is 47.1234°.

When the metric system was introduced there was a movement to change right angles to have 100 units
instead of 90, and the new unit is called a “gradian” or “gon”.

For mathematical uses, the radian is a more useful measure of angle. The idea is that with a circle of radius
1 any angle will subtend a certain length of arc, and that length is the (radian) measure. If the circle were double
the size, the length of the arc would double, so the radian measure is basically a ratio of lengths: the length along
the circle divided by the length of the radius. This perhaps provides an intuitive way to see that angle measure is
basically unitless: it’s a length divided by a length.

So angles are sort of unitless and sort of not: for the purposes of exponentials and trigonometric functions,
they behave as unitless, but you sure have to know the type of angle before you calculate its cosine.

If you’ve already memorized a few digits of 7 you don’t have to memorize the conversion factor to get from
degrees to radians and vice-versa:

7 radians = 180°,

and you can work out the conversion factor from that.

For some purposes it’s good to allow angles restricted to be between 0° and 360° (or 0 and 27 radians), and
for other uses, large positive and negative values make sense. For direction, the restricted values are fine, but
although an ice skater who has just spun for 3600° will probably be a lot dizzier than one who didn’t turn at all,
even though they both wound up facing the same direction.

The grade (or slope, incline, pitch) is the tangent of the angle the road (or whatever) makes with the horizontal.
This is the usual “rise/run” used in mathematics and is often measured in percent, so a road that climbs at a 10%
grade gains one foot in altitude for every 10 feet of horizonal movement. Grades vary from zero (flat) to infinity
(a sheer cliff).



6 Keeping Track of Units

When the author took a physics class in college, he learned about one of the huge advantages of algebra over
arithmetic. To illustrate, we’ll use a very simple example from high-school physics to illustrate the method.
Suppose that the class has just covered the formula for the height of an object above the ground if it started at
altitude d, had an initial velocity toward the ground of v (v would be negative if the initial velocity were up) and
the acceleration of gravity is g. Ignoring air resistance, et cetera, here’s the formula for the height h(¢) of the
object above the ground at time ¢:

h(t) = —gt?/2 + vt +d.

Suppose the problem is this: an object is initially thrown upward at 17 meters per second from a point 53
meters above the ground. How many seconds later will the object hit the ground?
In high school, I did this, since I knew that the acceleration of gravity on Earth is 9.8 meters per second per
second:
h(t) = —4.9t — 17t + 53 = 0,

and then I solved for ¢ using the quadratic formula. This wasn’t particularly dangerous since there was only one
step (using the quadratic formula) to obtain the answer from the given data. (Of course I needed to check that all
the units were in the meter-kilogram-second units, but once they were, I knew the value of ¢ would be in seconds.
In college, however, the professor would have worked it like this: She’d say, “Ok, let v = —17 and d = 53.
we have:
h(t) = —gt*/2 + vt +d = 0.

Use the quadratic equation to solve for ¢ and obtain:

‘o —v £ /v? + 2gd
J .

(Again, since it’s a high-school type problem the answer took just one step, but imagine that we had to do a full
page of calculation to obtain t.)

We can now just plug in the numbers for v, g and d to obtain the result, but this nice thing here is that before
doing so, we can sanity-check our calculations by making sure the the units of the answer come out as time.
The numerator combines a velocity with the square root of a velocity-squared and an acceleration times a lengh
(which is also a velocity squared), and the square root of a velocity squared is also a velocity. Thus all the terms
in the numerator are velocities (type L/T). The denominator is an acceleration with type L /T2, so the quotient
has type 7', as desired.

The thing that surprised me at first was the idea of converting known numbers to letters which seemed
counter-intuitive, but look at the advantage: the letters drag the units along with them to provide a check on the
rest of your calculations.

7 Logarithms and Exponentials

The equations describing some physical processes involve things like trigonometric functions, exponentials,
logarithms, et cetera. But what does it mean, say, to take the logarithm of a mass or length? It makes no sense, so
that means that whenever one of these functions appears in a physical formula, the value passed to the function
must be dimensionless.

That means that whatever combination of units appears in such a situation includes either a physical constant
or some constant of the situation being described that causes the units to cancel to be something dimensionless.



7.1 Radioactive Half Life

If half of a substance decays in a certain amount of time, say ¢, then the amount left after time ¢ is:
A(t) = Ao2—t/t1)2,

where A is the original amount. Note that the exponent of 2 has dimensions time divided by time, or, in other
words, is unitless.

Notice that before performing the exponentiation, you need to get rid of the units entirely. For example, if the
half life is one minute and you want to see how much is left after 30 seconds, the exponent is 30 seconds/minute.
Since seconds/minute isn’t dimensionless, you need to multiply by 1, which is 1/60 minute/second, yielding an
exponent of 1/2.

The same idea applies to exponential growth (of a population, perhaps). If we start with a population P, that
doubles every 5 years then the population P(¢) at time ¢ is given by:

P(t) = Py2!/t2.

The exponent is positive because it’s growing, but the ¢ /t5 in the exponent is unitless.

7.2 Harmonic Oscillator

If a voltage or a force has a circular component, the equation will consist of a sine or cosine or exponential, sort
of like this:

F = Fycos wt
V = VO eiwt

then ¢ will be a time, and w must have unit type 1/7, and in fact, w is just a frequency (like cycles/second).
Note that exponential formulas can be converted to logarithms or inverse trigonometric functions. The equa-
tions above can be converted to:

arccos(F/Fy) = wt
log(V/Vy) = iwt.

It’s clear that a force divided by a force or a voltage divided by a voltage are unitless measurements.

7.3 The Boltzmann Distribution

In a system where the particles can have various energy states, then as the temperature varies, the distribution of
the particles’ energies F'(F), can be expressed as:

F(E) o e B/FT
so the ratio of the distributions for two different energies F/; and E5 is given by:

F(E,)

F2—FE1)/kT
F(E»)

—

T is temperature (Kelvin) and so since the numerator of the exponent is an energy the denominator must be
also to eliminate the dimensions, so the Boltzmann constant £ must have units energy divided by temperature.



7.4 Entropy

If a system has n possible states for its particles, and the probability of being in state ¢ is p;, then the entropy S
of the system is proportional to:

S o — Zn:pi log p;.
1

Probabilities are dimensionless, so we’re feeding dimensionless measurements to the logarithm function.

8 Dimensional Analysis

Sometimes you can figure out approximately what a formula should look like, based only on the units. As an
example, suppose that you would like to know what the period is of a simple pendulum. We make the usual
assumptions: all the mass is in the bob and the string is massless. It seems clear that the things that might affect
the period (the time for it to swing back and forth) are the length of the string, the mass of the bob, and the
strength of gravity.

Gravity, g, is an acceleration (L/ T2), mass, m, is a mass (M), and the length of the string, [, is a length (L).
We need to combine these three things into a formula that yields a time (77). At first it seems weird, but we can
just combine the acceleration and length as /g and obtain units of 72; the mass doesn’t seem to be required at
all. Thus a possible form for the equation for the period ¢ might be something like:

l
toxy/—.
\/;

We use the symbol “oc” (proportional to) since there can be a dimensionless constant k involved, but a good
guess for the correct formula is this:

for some constant k.
In fact the formula turns out to be this:

and in fact, the period doesn’t depend on the mass at all!

9 Special Relativity

Without going into details, most people know a little bit about Einstein’s special relativity: that in a moving
frame of reference, lengths change and time appears to run at a different speed than they do in a fixed frame of
reference.

For example, if you are on the earth and measure the distance between a pair of objects and find that it is one
meter, a person passing by in a spaceship at half the speed of light will see those objects closer together than one
meter.

In three-dimensional Euclidean space, if we have assigned z, y, and 2z coordinates and we have two objects
at (z1,y1, 21) and at (z2, y2, 22) then we can calculate the distance D between them as follows:

D = \/(962 —21)% + (y2 —y1)? + (22 — 21)?

10



which is basically the Pythagorean theorem in three dimensions.

The nice thing about the formula above is that the value of D will be exactly the same, even if you use
a completely different Cartesian coordinate system. The distance between two objects is independent of the
coordinate system they’re described in.

9.1 The Invariance of the Interval

Of course since our friend in the rapidly-moving spaceship sees a different D that means that her coordinate
system must look different. So in relativity theory, there is no such thing as an absolute distance. However, there
is something that is absolute in all frames of reference, including those at rest, or those for observers traveling at
any speed and in any direction.

Consider two events: things that occur at a specific point and at a specific time. There is a mathematical
measurement of a quantity called the “interval” between the two events and it combines both the physical distance
between the events and the time between the events. The coordinates for an event include not only a place, but
a time, so four-dimensional coordinates are required to identify both the time and place of any event. Let’s say
that the events occur at (z1, y1, 21, t1) and at (x2, Y2, 22, t2), where ¢ and {» are the times the events occur in a
particular frame of reference. Then the following is a formula for the interval, I between the events:

I=\/(ma—21)2+ (y2 — 1) + (22 — 21)? — K2(t2 — 1),

where k is a constant.

Without the k the dimensions are messed up. We’d be combining a measurement with an L2 unit type with a
measurement having a 72 unit type and that doesn’t make sense. Thus k& must be a constant that converts a T to
a L, and that must be L/T, so k is basically a velocity. In fact, & = ¢, where c is the speed of light, so the true
formula for the interval between two events is:

I=/(z2—21)%+ (g2 —91)? + (22 — 21)% — (t2 — t1)2.

Nice, huh?

9.2 Adding Velocities

Another example from special relativity is the fact that velocities do not add. For low speeds they almost do, but
at high speeds, the error you obtain by just adding them gets larger.

Imagine the following situation: You are on the ground, fixed, and a spaceship goes by at 3/4 of the speed of
light: %c. A guy in the spaceship at the same time sees another spaceship travelling in the same direction, and it
appears to him that this second spaceship is moving (relative to him) at the same %c. How fast does the second
spaceship appear to be moving to you, on the ground?

If you just add the two velocities, you obtain 1.5¢: one and one-half times the speed of light, but it’s well-
known that objects cannot travel faster than c relative to each other, no matter what the frame of reference.

Here is the correct formula, according to special relativity for adding two velocities vy and vs in the same
direction, as in the example above:

V1 + Vg

vl 2: -
* 1+ vjve/c?

(Notice that the denominator is unitless, as required, since the numerator is already a velocity.)
In the example above, v; = vy = 3¢/4, so the apparent velocity of the faster ship from the point of view of

the guy on the ground is:
1.5v 24

119/16 257
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so it’s still not faster than light.

To obtain an estimate of what the error amounts to for speeds we’re used to, imaging two cars: the guy on
the ground first sees the first going 100 km/hr and the guy in that car sees the second car moving at the same 100
km/hr relative to him. How fast does the guy on the ground see the second car moving? It’s not quite 200 km/hr,
but how much less, actually?

The speed of light is approximately ¢ ~ 300, 000 km/second, so we’ll use that approximation.

We need to convert ¢ into km/hour, and that gives ¢ = 1,080, 000,000 km/hour. The denominator of the

formula will be 1 + %. A little arithmetic tells us that the correct apparent speed is:

199.999999999982851%1.

This is why relativity isn’t particularly noticeable in our everyday lives.

10 Definitions of Basic Units

We’ll mostly consider just the base units in the metric system here.

10.1 Length

One proposed way to obtain a unit of length was as the length of a pendulum that would go through a complete
cycle in one second. Gravity varies over the surface of the earth (slightly), and in any case the accuracy of a
meter can only be determined with the same accuracy as a second can be measured.

Originally, a meter was defined to be 1/10, 000, 000 of the distance from the north pole to the equator.

Since this is hard to measure, and depends on lots of things, the definition was changed in about 1870 to
be the distance between two lines on a standard bar composed of an alloy of 90% platinum and 10% iridium,
measured at the melting point of ice.

In 1960 it was changed to be 1,650, 763.73 wavelengths of the orange-red emission line in the electromag-
netic spectrum of the krypton-86 atom in a vacuum.

In 1983 it was changed to be the length of the path travelled by light in vacuum during a time interval of
1/299, 792,458 of a second.

We are warned, however, to use this definition only when the distances measured are small compared to the
curvature of space described by general relativity.

This is unrelated to the meter, but here’s an interesting fact about the inch. From one of the original definitions
as the length of three barleycorns, over time better and better definitions of the inch were used, and a very accurate
definition that depended on the accuracy of the meter was that 1 inch is 1/39.37 meters. This made the inch have
a length of 2.54000508 centimeters. Since this is so close to 2.54, in 1959 the international inch was changed to
be exactly 2.54 centimeters and the United States joined in that treaty, but we use the old definition for surveying
work, where the difference amounts to about 1/8 inch per mile, or about 10 meters across the width of the United
States.

For much larger and smaller distances, it’s useful to have much larger or smaller units to measure them. Light
year = yr - ¢, parsec, angstrom = 10~ 19,

10.2 Time

A second was originally defined as the appropriate fraction of a mean solar day with 24 hours per day, 60 minutes
per hour and 60 seconds per minute. This isn’t bad, but with the earth gradually slowing down, it’s not accurate
enough for modern purposes.
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To take into account the slowing of the earth, a better definition was this: ’the fraction 1/31,556,925.9747 of
the tropical year for 1900 January O at 12 hours ephemeris time.” This definition was used up until 1960.

In 1960, the definition of a second was changed to be “’the duration of 9192631770 cycles of the radiation
corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom,” and
in 1997, this definition was slightly changed to refer to a cesium atom at rest at a temperature of 0 K.”

10.3 Mass

The kilogram was originally defined to be the mass of one liter of water at the melting point of water. In 1799
a prototype was made and later found to be slightly off, so the official definition became the mass of 1.000028
liter of water at its greatest density.

There are copies of the prototype kilogram, and over time, their relative weights vary, so it has been proposed
(but as of 2014 not acted upon) that the kilogram be based on a physical constant of nature (Planck’s constant).

There are other proposals, including one that is based on a certain count of a particular kind of atom: 83 1/3
moles of Carbon 12.” A mole is defined to be about 6.02214162 x 1022 atoms.

There is also the “Avogadro Project” that proposes to use ultra-pure silicon for the definition of a kilogram.
A sphere with an accuracy of 0.3 nanometers can be formed from a perfect crystal of silicon. That amounts to an
error of about one atom-width.

Here’s another proposal: ”a kilogram is the mass which would be accelerated at precisely 2 x 10~"m/s? when
subjected to the per-meter force between two straight parallel conductors of infinite length, of negligible circular
cross section, placed one meter apart in vacuum, through which flow a constant current of 1/(1.60217 x 10~1?)
elementary charges per second”.

11 Energy, Work, Heat, and Power

Energy will always have unit type M L?T~2, and sometimes it is called “energy,” sometimes “work,” and some-
times “heat.” They are all the same (but the terms are used in different situations.

In the pure MKSA system, a joule of energy is the amount of energy needed to push against one Newton of
force for one meter. A watt is one joule per second. If you multiply watts by time, you get back to energy, so
perhaps the best known units of energy by “the man in the street” is kilowatt-hours, since that’s what you pay
for with your electric bill. You're paying directly for your energy usage, even though the energy you got as a
combination of heat and work and light was not measured by you as a force through a distance, but as a voltage
pushing through a resistance. (The electrical energy may have been generated by a force through a distance
(hydroelectric energy from water’s weight pushing a generator’s turbine).

Horsepower is a commonly-used unit of power; namely (supposedly), the power of a single horse. It is
defined to be 550 foot-pounds per second, or 745.7 watts. The amount of work such a theoretical horse does
would be measured in horsepower-hours or similar.

When we measure heat, we often use calories or Calories. A “calorie” is the amount of heat required to
raise the temperature of one milliliter of water by one degree Celsius. Of course the precise definiton includes
exact specifications for the temperature at which it’s measured. When you eat an ice-cream bar, you eat, say, 300
Calories (note the upper-case “C”). A Calorie is equal to a kilocalorie, or 1000 calories. One calorie wouldn’t
keep a bug alive for very long.

One kilocalorie is equal to 4184 joules. If you’re interested in losing weight through exercise and you wonder
how much work you’ll need to do on an exercise bike with a power meter to undo the damage of one Dove Bar
(about 260 calories), the rough calculation is pretty easy. We humans are close to 25% efficient, meaning that to
do one calorie of work as muscle output we need to burn about 4 calories of energy (from fat or elsewhere). Thus
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to produce 4184 joules, we need to burn about 4000 calories of fat, and since 4184 is almost the same as 4000
for our rough calculation, it comes out to be about one Calorie (kilocalorie) for each 1000 joules.

So if you pedal away at 200 watts, every 5 seconds you burn 1 Calorie. So to burn the Dove Bar, you need
about 5 x 260 = 1300 seconds, or about 22 minutes!

Then there’s the BTU (British Thermal Unit) that’s used to measure furnaces sometimes. It’s based on the
same idea as the calorie, except that it’s the amount of heat needed to raise the temperature of one pound of water
by one degree Fahrenheit. It’s about 1055 joules.

12 Physical Analogs

Let’s consider two different physical systems: one that looks at the motion of an object in a straight line, with
forces, masses, et cetera, and another that looks at rotations of a body about an axis in the plane. To make an
object move in a straight line, you apply a force to it in the direction of the line. To make an object spin about an
axis, you apply a force to some point on the object perpendicular to the line from the axis to that point.

When motion occurs along a line, the position (length) changes. When rotation occurs, the angle changes.
We can measure the rate the position changes (the speed, or velocity) and we can measure how fast the rotating
object turns (how fast the angle changes). In fact, for most of the physical measurements of the object moving
in a line there is a corresponding measurement of the turning object and not only that, but the equations that
describe the relationships are the same. So if you’re an expert at solving equations of motion along a line, you
are automatically an expert at solving the equations of rotation.

Here’s a chart showing the correspondence:

Displacement T L Angular Displacement 0 1
Veocity v=dz/dt LTt Angular Velocity w=dof/dt 7!
Acceleration a = d*z/dt? LT Angular Acceleration o = d*0/dt? T2
Mass m M Moment of Inertia 1 ML?
Force ma MLT=? | Torque T=1a MIL?T?
Work [ Fdz ML*T* | Work [ rdo ML?T?
Kinetic Energy mv?/2 ML?T~? | Kinetic Energy Iw?/2 ML?*T?
Power Fov ML?T=3 | Power P=rw ML?T—3
Momentum p=mu MLT™' | Angular Momentum L=1Iw ML?T™!

Here is a similar chart comparing mechanical and electrical properties:

Independent variable | time (%) time (t)

Dependent variable position (x) charge (q)

Inertia mass (1m) inductance (L)
Resistance drag coefficient (ym)  resistance (R = L)
Stiffness stiffness (k) capacitancefl 1/0)
Resonant frequency | w3 = k/m wi =1/LC

Period to = 2m\/m/k to = 2mVLC
Figure of merit Q =wo/vy Q=w)L/R

Here’s a similar correspondence between electrical current and linear motion. Suppose you have a mass m
connected to a spring with spring constant & and a resistive trem of ym acted on by a force F(¢). Then the
position of the object x(t) is given by the solution to the following differential equation:

F(t) = m(di;gt)) + ’ym(dflit)> + ke (t).
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Now consider the charge () on a capacitor of capacitance C in a circuit with inductance L and resistance R
where the voltage V() is applied the amount of charge ¢(t) at any time is given by the solution to the following

differential equation: ,
d*q(t) dg(t)y 1
v = L() + R(Tg) + gatt:

Notice that these are exactly the same differential equations, and you can check that the units in each term
are the units of force (in the first one) and units of voltage (in the second).

The mechanical system is quite simplified, but one can write down similar differential equations for much
more complicated linear mechanical systems and for every one, a corresponding electrical system can be built.
The differential equations may be very hard to solve, so designing a mechanical system with desired properties
would be hard to do and doing it by trial and error would be very expensive since changing masses, springs, et
cetera, is difficult.

On the other hand, it’s easy to make an electrical circuit that includes variable inductors, resistors and ca-
pacitances, so by just turning knobs, you can simulate continuously varying masses, spring constants, et cetera,
to obtain the desired behavior of the amount of charge, ¢(t). Such electrical systems that are built to simulate
mechanical ones are known as analog computers.

13 Physical Constants

As far as we know, the following values are physical constants and do not vary in time or relative to location in
the universe.

e ¢, the speed of light in a vacuum. It’s approximately equal to 299, 792, 458 m/s.

e h, Planck constant: Approximately 6.626070040 x 10~3* joule seconds. Often it is useful to divide this
by 27 to form another constant, i = h/2.

e ¢, the charge of an electron: Approximately 1.6021766208 x 10~'° coulombs.

e ¢y, the electric constant or permittivity of free space: Its value is approximately 8.854187817 x 10712
farads/m.

e (5, the gravitational constant. The gravitational force between two spherical objects having masses 11
and mo with r the distance between their centers is given by F' = Gmimg/ r2. The value of G is about
6.674 x 101YNm?2 /kg?.

13.1 The Planck Length

If we combine The Planck constant, the gravitational constant and the speed of light properly we can obtain a
pure length, called the “Planck length”:

hG
lp = \| — = 1.616119 x 10~*m.
C

It’s not clear what physical significance this has, but it is a fundamental length, defined solely on other fixed
physical constants.
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13.2 The Fine Structure Constant
If we write down the unit types of all the constants above, we obtain (including A for current in amperes):
o c: LT !
o h: ML?T—!
o c: AT
o co: T*A2L=3M

More useful in most physics applications is i = h/(27), called the “reduced planck constant), but this has
the same unit type as h.

The fine structure constant « is this: )
1 e

o= —.
47T€() he
It is constructed as a product of values that seem to be constant in the universe, so this value will also be constant

everywhere in the universe. What is its unit type?
Here it is:

A%T?
(TAA2L—3M)(MLAT-Y)(LT-1)’
If you work it out, everything cancels, so the fine structure constant is unitless! The value is about 7.297352566 x

10~ and the inverse is about 137.035999139. Nobody knows why this number should pop up, but it does, in
many, many physics relationships.
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14 Practice Problems

Do not do any arithmetic, except on the final problem. Just leave your answer in the form of a series of multipli-
cations and divisions.

Using only the following conversion values, write down expressions which, when the arithmetic is performed,
would yield the correct results. As an example, if a problem asks to find out how many inches there are in 3.7
feet, since we know 12 inches equals 1 foot, the solution would be “3.7 x 12 inches”.

14.1 Conversion Values

Volume
- Length 7.48 gallon 1 foot3
12 inches 1 foot 3 .
1 vard 3 feet 1 meter 1000 liter
y 1b 2
. oard-foot | 1 foot“-inch
5280 feet 1 mile .
1 chain 22 yards Time
y 1 year 365 days
1 furlong 220 yards
. 1 day 24 hours
39.37 inches 1 meter .
1 hour 60 minutes
Area .
- 1 minute 60 seconds
1 acre 1 chain-furlong
Angle Currency
g - .92 euro \ 1 dollar
1 degree 60 minutes
1 minute 60 seconds Mass
1 kilogram \ 2.2 pounds

14.2 Exercises

1. Convert 1 year to seconds.

2. Convert 20 feet/second to miles/hour.

3. Convert 5 euros/kilogram to dollars/pound.
Convert 1 mile? to acres.

Convert 3 gallons to liters.

A

Convert 1 meter® to board-feet.

7. Convert 47.1234° to degrees-minutes-seconds form. (Do the arithmetic here.)
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14.3 Solutions to Exercises

1.
365 days 24 hours 60 minutes 60 seconds
1 year x X X X - .
1 year 1 day 1 hour 1 minute
2.
feet 60 seconds 60 minutes 1 mile
20 X - X X .
second 1 minute 1 hour 5280 feet
3.
euro 1 kilogram » 1 dollar
kilogram ~ 2.2 pounds = 0.92 euros’
4,
9 5280 feet \ 2 1yard\2 1 chain 1 furlong 1 acre
1 mile” x ( - ) X ( ) X X X - .
mile 3 feet 22 yards 220 yards 1 chain - furlong
5.
3 gall " 1 foot? o (12 inches>3 ( 1 meter )3 1000 liter
n .
gations 7.48 gallons 1 foot 39.37 inches meter?
6.
3 ,39.37inches\3 1 board-foot 1 foot 2
1 meter® x ( ) 5 < - )
1 meter 1 foot” - inch 12 inches
7.
o o o o o 60 minutes o ,
47.1234° = 47° 4 .1234° =47° + .1234° x ———— = 47° 7.404
1 degree
o =/ I o =/ I 60 SeCOIldS o =/ 1
= 4A7° 7 + 404" =47° 7" + 404" x ———— =47° 7 24.24".
1 minute
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