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Abstract

This article will explain the meaning of the Riemann integral for people who do not know anything
about calculus. We will not prove many of the results, but we will try to give an intuitive idea not only
of what it means, but why it is important.

1 Introduction

Suppose you drive a car at60 miles per hour for one hour. How far do you go? To obtain the answer,
simply multiply the two values:60 miles per hour and1 hour, to obtain60 miles. But how often have
you been on a car trip where the car never changed speed? Never, right? Real vehicles change speed all
the time, they don’t suddenly change speed, and that makes the simple multiplication of rate times time
to obtain distance much less useful.

But to see how we might handle the problem of looking at travelwith a variable rate of speed, lets consider
how we might approach the following slightly more difficult problem:

Your car travels at60 mph for one hour, then at20 mph for another hour, and finally at40 mph for two
more hours. How far do you go? To solve it, you simply look at the time periods individually and add the
distance traveled in all three:

D = 60 × 1 + 20 × 1 + 40 × 2 = 160 miles.
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Figure 1: Traveling at a Variable Speed

Figure 1 illustrates the situation graphically: the horizontal axis is time, going from zero to four hours,
and the vertical axis is the velocity. Notice that when you break the axis into three chunks the area of the
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rectangles corresponds to the distance: their height is thevelocity and their width is the time. The area is
the width times the height.

In a situation where the velocity actually varies continuously, the same principle works. The area under
the velocity curve represents the total distance traveled.Thus we have one good example of a situation
where it would be very useful to be able to calculate the area under a curve. That is exactly what the
Riemann integral allows us to do.

2 Integral as Area

The most general form of the Riemann integral looks something like this:
∫ b

a

f(x)dx. (1)

Often you will see the general functionf(x) or the variablesa andb in Equation 2 replaced by some
specific function or values, as in the following examples:

∫ 5

0

x3dx

∫

t

1

log x

1 + x
dx

∫

∞

−∞

e−x
2

dx.

In Equation 1a andb are just numbers, andf(x) stands for any function of a single variable. The funny
integral sign (

∫

) and the “dx” at the end basically go together in somewhat the same way that an open
parenthesis “(” is usually matched with a “)” in mathematical equations.

A

a b

f(x)

Figure 2: General Riemann Integral

If you draw the graph of the functionf(x) as in Figure 2 anda andb indicate points on thex − axis
as in the figure, then area of the shaded region indicated byA in the figureis the value of the integral in
Equation 1. In other words, the Riemann integral representsthe area under the curvef(x) between the
pointsa andb. For now, we’ll assume that the curvef(x) always lies above thex-axis, so there is no
ambiguity about what “under the curve” means.

As a specific example, let’s look at Figure 3. The specific function plotted is the parabolay = x2/2. The
area indicated in the figure is the area under the parabola from x = 0 to x = 1. The way to write that area
as a Riemann integral is:

∫ 1

0

x2

2
dx.
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A
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Figure 3: Area Under a Parabola

There are other types of integral besides the Riemann integral1, but in this article, we will only deal with
Riemann integration, so here we will use the terms “Riemann integral” and “integral” interchangeably.
Similarly, “integration” and “Riemann integration” will mean the same thing.

3 Simple Integral Evaluations

a b

f(x) = 1

Figure 4: Area Under a Constant Function

There are a few simple functions whose integral we can evaluate using formulas we already know. The
easiest is the constant functionf(x) = 1. See Figure 4.

In this case the “curve”f(x) is just a straight line one unit above thex-axis, so it is obvious that the area
from a to b is just the area of the rectangle whose height is1 and whose width isb − a. Thus we know
that:

∫ b

a

1dx = b − a.

Another simple function whose integral is easy to evaluate are the linear functionsf(x) = kx, wherek is
a constant. Figure 5 shows an example wherek is approximately equal to1/2. Basically, the area we are
seeking is the area of the shaded trapezoid and one way to calculate that is as the difference of the areas
of two triangles, one with baseb and one with basea whose vertices are at the origin. The larger triangle
has baseb and heightkb; the smaller one has basea and heightka. The areas of the two arekb2/2 and

1Examples include the Stieltjes integral, the Darboux integral and the Lebesgue integral.
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a b

f(x) = kx

Figure 5: Area Under the Linear Functionf(x) = kx

ka2/2, respectively. Thus we can conclude that:

∫

b

a

kxdx =
kb2

2
−

ka2

2
. (2)

4 Upper and Lower Sums

Without calculus, it is difficult to do many exact evaluations of Riemann integrals, and what we present
here is a general method which, by itself, gives a good approximation of an integral. This method also
allows us to put error bounds on that estimate, and if we are allowed to use the mathematical concept of
a limit, we can, in many cases, provide an exact evaluation ofa Riemann Integral.

f(x) f(x)

Figure 6: Upper and Lower Sums

Look at the two examples in Figure 6. We would like to determine the area under the curvey = f(x)
between two values ofx and one method to obtain an estimate is to subdivide thex-axis into a number
of equally-spaced intervals2. On each of the small intervals, the functionf(x) takes on a smallest and a
largest value3.

On the left, we form rectangles whose height is the minimum value off(x) on each of the small intervals.
On the right, the height of the rectangles are the maximum values off(x) on each interval. If we add up
all the areas of the rectangles on the left, since all of them are contained in the area under the curve, that

2They do not need to be equally-spaced for the general integral, but for the purposes of an introduction, this is a reasonable way
to begin.

3Again, this may not be the case for all functions, but for now we will consider only “well-behaved” functions.
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sum must be smaller than the area we are seeking. Similarly, on the right, all the rectangle areas include
the area we are seeking, so the sum of those rectangle areas isgreater than the true area. If we work out
both sums, we don’t know the true area, but wedo now have a lower bound and an upper bound for the
area.

f(x) f(x)

Figure 7: Upper and Lower Sums

In Figure 6 the part of thex-axis of interest was divided only into7 pieces and as you can see, the
area estimate is fairly crude. There is no reason to limit ourselves to7 subdivisions; in fact, the more
subdivisions we make, the better our upper and lower area estimates are likely to be. See Figure 7 as an
example.

It would be nice to have a sort of formula to express these upper and lower sums rather than just a picture,
so we will make a first pass at this. Imagine that the interval on thex-axis is divided inton equal-sized
pieces, each of which has length∆x. For example, if the interval goes froma to b and there aren
subdivisions, then∆x = (b − a)/n.

If we number the intervals from1 to n, let x1 be the value ofx where the functionf(x) obtains its
minimum value in interval1 (in other words, when the curve is closest to thex-axis),x2 where it obtains
its minimum value in interval2, and so on, so thatxi is where the function obtains its minimum in interval
i. Similarly, letxi be thex-value wheref(x) obtains its maximum in intervali.

Then the Riemann lower sum, which is a lower bound for the Riemann integral, is given by:

f(x1)∆x + f(x2)∆x + · · · + f(x
n
)∆x. (3)

If you know the summation notation, we can write Equation 3 as:

f(x1)∆x + f(x2)∆x + · · · + f(x
n
)∆x =

n
∑

i=1

f(x
i
)∆x.

Using exactly the same reasoning, we can conclude that the upper bound to the area, called the Riemann
upper sum, is given by:

f(x1)∆x + f(x2)∆x + · · · + f(xn)∆x =

n
∑

i=1

f(xi)∆x.

So (using the summation notation for compactness), we obtain:
n

∑

i=1

f(x
i
)∆x ≤

∫

b

a

f(x)dx ≤

n
∑

i=1

f(xi)∆x,
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and from the previous discussion, it appears that asn gets larger and larger, the lower and upper area
approximations get better and better.

At this point, the reason for the integral notation becomes alittle clearer. The “Σ” in the sum notation is
the Greek letter sigma that corresponds so an English “S”. The integral sign (

∫

) looks like an extended
“S”. Similarly, the Greek letter Delta (∆) corresponds to the English “D”, as in the “dx” in our integrals.

5 Integral Evaluation Using Upper and Lower Sums

Going back to our simple examples, iff(x) = 1 is the constant function, as illustrated in Figure 4 we can
see that the upper and lower sums will be the same, and will be equal to the exact value of the integral.

a b

f(x) = kx

a b

f(x) = kx

Figure 8: Upper and Lower Sums forf(x) = kx

A more interesting example is the linear functionf(x) = kx (and we will assume thatk > 0). See
Figure 8. We can see thatf(x) = kx obtains its minimum at the left end of each interval and obtains its
maximum at the right end of each interval.

If the interval froma to b is divided inton subintervals, then the value at the left end of intervali is

f(a + (i − 1)(b − a)/n) = k(a + (i − 1)(b − a)/n)

and the value at the right of intervali is

f(a + i(b − a)/n) = k(a + i(b − a)/n)

.

The lower sum is thus:

ka∆x + k
(

a +
b − a

n

)

∆x + k
(

a +
2(b − a)

n

)

∆x + · · · + k
(

a +
(n − 1)(b − a)

n

)

∆x,

and the upper sum is:

k
(

a +
b − a

n

)

∆x + k
(

a +
2(b − a)

n

)

∆x + · · · + k
(

a +
(n − 1)(b − a)

n

)

∆x + k
(

a +
n(b − a)

n

)

∆x.

A little algebra applied to the upper and lower sums yields a lower sum of:

k
(

na +
b − a

n
(1 + 2 + · · · + (n − 1))

)

∆x,
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and an upper sum of:

k
(

na +
b − a

n
(1 + 2 + · · · + n)

)

∆x,

where∆x = (b − a)/n.

We know that1 + 2 + · · ·+ (n− 1) = n(n− 1)/2 and that1 + 2 + · · ·+ n = n(n + 1)/2, so combining
the equations above, and doing some algebra, we have:

k
( (b − a)na

n
+

(b − a)2

n2

(n − 1)n

2

)

≤

∫

b

a

kxdx ≤ k
( (b − a)na

n
+

(b − a)2

n2

n(n + 1)

2

)

k
(

(b − a)a + (b − a)2
(n − 1)

2n

)

≤

∫ b

a

kxdx ≤ k
(

(b − a)a + (b − a)2
(n + 1)

2n

)

k
(

(b − a)a +
(b − a)2

2

(

1 −
1

n

)

)

≤

∫

b

a

kxdx ≤ k
(

(b − a)a +
(b − a)2

2

(

1 +
1

n

)

)

k
(

(

(b − a)a +
(b − a)2

2

)

−
(b − a)2

2n

)

≤

∫

b

a

kxdx ≤ k
(

(

(b − a)a +
(b − a)2

2

)

+
(b − a)2

2n

)

k
(b2

2
−

a2

2

)

−
k(b − a)2

2n
≤

∫ b

a

kxdx ≤ k
(b2

2
−

a2

2

)

+
k(b − a)2

2n
.

Notice in the final line above that the integral
∫ b

a
kxdx is bounded by the same value:k(b2/2 − a2/2)

but with a small additional term added to the right and subtracted from the left. Notice that this term has
ann in the denominator, so asn gets larger and larger, the error terms get smaller and smaller, and can,
in fact, be made to approach zero as closely as desired. We don’t exactly have a formal proof here, but
the calculation above should make it clear that the upper andlower sums squeeze the Riemann integral
closer and closer tok(b2/2 − a2/2), which is exactly the value we obtained using the areas of triangles
in Section 3, Equation 2.

With even more complicated calculations (but similar to those used above), we can evaluate Riemann
integrals for any polynomial function ofx. In fact, it turns out that:

∫

b

a

xndx =
bn+1

n + 1
−

an+1

n + 1
.

If you check back, you will notice that inevery example we have worked out in detail so far, there
corresponds to the functionf(x) another functionF (x) such that:

∫

b

a

f(x)dx = F (b) − F (a).

There are actually many possible values ofF that do this. One way to think ofF (x) is as the area under
the curve from0 to x. Then the area under the curve fromx = a to x = b is justF (b) − F (a). When
you take calculus, you will spend a semester figuring out how to determineF (x) givenf(x) — it is not
an easy problem.
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6 A More Interesting Example

Using the observation in the last paragraph of the previous section, let’s work out one more example of an
integral, but this time, let’s use a function where we don’t know the answer. We will find the area under
the parabolaf(x) = x2 betweenx = a andx = b. We will simplify the problem by finding the area
under the parabola fromx = 0 to x = b which we shall callF (b). Using the observation, the area from
x = a to x = b will be F (b) − F (a).

0 a 0 a

Figure 9: Area Under the Parabolay = x2

The areas represented by the upper and lower Riemann sums areshown in Figure 9. Imagine that there
aren subdivisions on thex-axis from0 to a, each of length∆x = a/n. As with the linear function, the
minimum heights are at the left of the intervals and maximumsare at the right. A little work shows that
the lower Riemann sum is:

(∆x)(02 + (∆x)2 + (2∆x)2 + · · · + ((n − 1)∆x)2) = (∆x)
n−1
∑

k=0

(k∆x)2.

Similarly, the upper Riemann sum is:

(∆x)((∆x)2 + (2∆x)2 + · · · + (n∆x)2) = (∆x)

n
∑

k=1

(k∆x)2.

Factoring out all the∆x terms we have the following inequality:

(∆x)3
n−1
∑

k=0

k2
≤

∫

a

0

x2dx ≤ (∆x)3
n

∑

k=1

k2. (4)

We know that:
n

∑

k=1

k2 =
n(n + 1)(2n + 1)

6
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so
n−1
∑

k=0

k2 =
n(n − 1)(2n − 1)

6
.

Thus, substitutinga/n for ∆x in the integral inequality Equation 4, we obtain:

a3n(n − 1)(2n − 1)

6n3
≤

∫

a

0

x2dx ≤
a3n(n + 1)(2n + 1)

6n3
.

If we expand the fractions above we obtain:

a3

3
−

a3

2n
+

a3

6n2
≤

∫

a

0

x2dx ≤
a3

3
+

a3

2n
+

a3

6n2
.

As in the example with the linear function, the term of interest isa3/3. The other terms haven andn2 in
the denominator, and hence get tiny asn gets large. Thus:

∫

a

0

x2dx =
a3

3
,

From which we conclude that:
∫

b

a

x2dx =
b3

3
−

a3

3
.

7 Applications

First we’ll take another look at traveling at a variable rateof speedr that we discussed in the introduction.

What really happens is thatr changes with time, so instead of being a constantr, r is really a function of
t: r = r(t). Now the formulad = rt doesn’t work, but the following formula does calculate the distance
traveled between timest1 andt2:

d =

∫

t2

t1

r(t)dt. (5)

Don’t worry about thedt in place ofdx: imagine that you’re using at-axis instead of the usualx-axis.

The reason this works can be made clearer by looking at the Riemann upper and lower sums. On small
enough intervals of time, the rate doesn’t change much, so the lower bound for the distance traveled in an
interval is the slowest rate in that interval multiplied by the time spent in that interval, and an upper bound
can be similarly obtained using the the maximum rate in that interval. If we add together all these little
chunks of distance which will approximate the distance of the entire trip, we obtain the upper and lower
Riemann sums. As the number of intervals is increased, and their size made smaller, these lower and
upper limits on the distance will squeeze together to a limiting value which is just the Riemann integral
in Equation 5.

As a second example, work = force× distance. As in the previous example, with a constant force,you
just multiply the two. But if force varies with distance, youneed to integrate. The gravitational force
between two objects with massesm1 andm2 is Gm1m2/s2, wheres is the distance between them. The
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numberG is just the gravitational constant. To move them apart from distances1 to s2, here is the work
W required:

W =

∫

s2

s1

Gm1m2

s2
ds. (6)

If you think of the entire work as being broken up into little pieces of work over each little piece of the
motion of distance∆s, you will see that the upper and lower Riemann sums provide lower and upper
bounds on the work required, and, as in the previous example,the two squeeze together to a value which
is indicated by the integral in Equation 6.

Similar integrals can be written down for many, many examples of physical calculations where the phys-
ical properties vary with time or distance.

8 General Properties of the Riemann Integral

In this brief introduction, there are many things we have notcovered. Here are a few of them:

• What if the functions take on negative values? Both positiveand negative values?

• What if b < a in
∫ b

a
f(x)dx?

• What if the boundsa andb are infinite or the function itself “goes to infinity”?

• What if the function is highly discontinuous?

In a calculus course, a lot of theorems are proved about the Riemann integral, and some are “obvious”,
like the following:

∫ b

a

f(x)dx +

∫ c

b

f(x)dx =

∫ c

a

f(x)dx.

If the above equation is not obvious, it simply states that the total area froma to c is the area froma to b
added to the area fromb to c, or in terms of Figure 10, that the total area that is indicated by the hashed
lines is the sum of areasA andB.

A B

a b c

f(x)

Figure 10: Sum of Areas

Here are some other properties that are “obvious” with the correct figures (which the author has not had
time to produce as of this printing).
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If k is a constant:
∫

b

a

kf(x)dx = k

∫

b

a

f(x)dx.

For any two functionsf(x) andg(x) that are integrable:

∫

b

a

(f(x) ± g(x))dx =

∫

b

a

f(x)dx ±

∫

b

a

g(x)dx.
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