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Abstract

This article will explain the meaning of the Riemann intédoa people who do not know anything
about calculus. We will not prove many of the results, but viletry to give an intuitive idea not only
of what it means, but why it is important.

1 Introduction

Suppose you drive a car & miles per hour for one hour. How far do you go? To obtain thenans
simply multiply the two values60 miles per hour and hour, to obtain60 miles. But how often have
you been on a car trip where the car never changed speed?, Ngki€? Real vehicles change speed all
the time, they don’t suddenly change speed, and that makesirtiple multiplication of rate times time
to obtain distance much less useful.

But to see how we might handle the problem of looking at trawti a variable rate of speed, lets consider
how we might approach the following slightly more difficutgblem:

Your car travels a60 mph for one hour, then &0 mph for another hour, and finally 46 mph for two
more hours. How far do you go? To solve it, you simply look &ttilme periods individually and add the
distance traveled in all three:

D =60x1420x 1440 x 2 = 160 miles.
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Figure 1: Traveling at a Variable Speed

Figure 1 illustrates the situation graphically: the honita axis is time, going from zero to four hours,
and the vertical axis is the velocity. Notice that when yoedirthe axis into three chunks the area of the



rectangles corresponds to the distance: their height igetoeity and their width is the time. The area is
the width times the height.

In a situation where the velocity actually varies continsiguthe same principle works. The area under
the velocity curve represents the total distance traveldulis we have one good example of a situation
where it would be very useful to be able to calculate the areteua curve. That is exactly what the
Riemann integral allows us to do.

2 Integral asArea

The most general form of the Riemann integral looks somagttilee this:
b
[t @

Often you will see the general functigf{z) or the variables: andb in Equation 2 replaced by some
specific function or values, as in the following examples:
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In Equation 1a andb are just numbers, anflz) stands for any function of a single variable. The funny
integral sign () and the dz” at the end basically go together in somewhat the same wayathapen
parenthesis “(” is usually matched with a “)” in mathemaltiequations.
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Figure 2: General Riemann Integral

If you draw the graph of the functiofi(xz) as in Figure 2 and andb indicate points on the — azis
as in the figure, then area of the shaded region indicated inythe figureis the value of the integral in
Equation 1. In other words, the Riemann integral represtetarea under the curygz) between the
pointsa andb. For now, we'll assume that the cury&z) always lies above the-axis, so there is no
ambiguity about what “under the curve” means.

As a specific example, let’s look at Figure 3. The specific fiomcplotted is the parabola= 22 /2. The
area indicated in the figure is the area under the parabotadre: 0 to z = 1. The way to write that area
as a Riemann integral is:
1,2
/ x—da:.
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Figure 3: Area Under a Parabola

There are other types of integral besides the Riemann mitegut in this article, we will only deal with
Riemann integration, so here we will use the terms “Riemaitegral” and “integral” interchangeably.
Similarly, “integration” and “Riemann integration” will san the same thing.

3 Simplelntegral Evaluations

fx)=1

Figure 4: Area Under a Constant Function

There are a few simple functions whose integral we can etaluging formulas we already know. The
easiest is the constant functigiz) = 1. See Figure 4.

In this case the “curvef(x) is just a straight line one unit above theaxis, so it is obvious that the area
from a to b is just the area of the rectangle whose height &d whose width i$ — a. Thus we know

that:
b
/ 1dx = b — a.

Another simple function whose integral is easy to evaluegdlze linear functiong (z) = kx, wherek is

a constant. Figure 5 shows an example wheieapproximately equal tb/2. Basically, the area we are
seeking is the area of the shaded trapezoid and one way tdatalthat is as the difference of the areas
of two triangles, one with badeand one with base whose vertices are at the origin. The larger triangle
has basé and heightb; the smaller one has baseand height:a. The areas of the two aié?/2 and

1Examples include the Stieltjes integral, the Darboux irstegnd the Lebesgue integral.



f(x) =kx

Figure 5: Area Under the Linear Functigifz) = kz

ka?/2, respectively. Thus we can conclude that:

b 2 2
/ fdz = PO~ ka” )
; 2 2

4 Upper and Lower Sums

Without calculus, it is difficult to do many exact evaluatsoof Riemann integrals, and what we present
here is a general method which, by itself, gives a good apmration of an integral. This method also
allows us to put error bounds on that estimate, and if we doead to use the mathematical concept of
a limit, we can, in many cases, provide an exact evaluati@enRiEmann Integral.
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Figure 6: Upper and Lower Sums

Look at the two examples in Figure 6. We would like to detemrtine area under the curye= f(x)
between two values of and one method to obtain an estimate is to subdivide:thgis into a number
of equally-spaced intervélsOn each of the small intervals, the functiitr) takes on a smallest and a
largest valué

On the left, we form rectangles whose height is the minimuhaevaf f (z) on each of the small intervals.
On the right, the height of the rectangles are the maximumesgabff(x) on each interval. If we add up
all the areas of the rectangles on the left, since all of themtantained in the area under the curve, that

2They do not need to be equally-spaced for the general infdmriafor the purposes of an introduction, this is a reastmelay
to begin.
3Again, this may not be the case for all functions, but for noswill consider only “well-behaved” functions.



sum must be smaller than the area we are seeking. Similartheoright, all the rectangle areas include
the area we are seeking, so the sum of those rectangle agrasier than the true area. If we work out
both sums, we don’t know the true area, butdeenow have a lower bound and an upper bound for the

area.
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Figure 7: Upper and Lower Sums

In Figure 6 the part of the:-axis of interest was divided only intd pieces and as you can see, the
area estimate is fairly crude. There is no reason to limiselwes to7 subdivisions; in fact, the more
subdivisions we make, the better our upper and lower ar@aasts are likely to be. See Figure 7 as an
example.

It would be nice to have a sort of formula to express thesengopelower sums rather than just a picture,
so we will make a first pass at this. Imagine that the intervahe z-axis is divided inton equal-sized
pieces, each of which has lengffz. For example, if the interval goes fromto b and there are
subdivisions, thed\z = (b — a)/n.

If we number the intervals from to n, let z; be the value ofc where the functionf(z) obtains its
minimum value in interval (in other words, when the curve is closest to ihaxis),z, where it obtains
its minimum value in intervat, and so on, so that; is where the function obtains its minimum in interval
1. Similarly, letZ; be thex-value wheref(x) obtains its maximum in interval

Then the Riemann lower sum, which is a lower bound for the Riemintegral, is given by:
fla)Az + fzy) Az + - + f(z,)Aw. @)

If you know the summation notation, we can write Equation:3 as
f@)Az + f@) Az + -+ flz,)Ar = > f(a,)Ax.

Using exactly the same reasoning, we can conclude that ther iypund to the area, called the Riemann
upper sum, is given by:

F@)Az + f(T2) Az + -+ f(Tn)Az = Y f(Ti)Aw.
i=1
So (using the summation notation for compactness), wembtai

n b n
> fe)ae < [ flapds <3 f@)ar,
=1 a =1
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and from the previous discussion, it appears that gets larger and larger, the lower and upper area
approximations get better and better.

At this point, the reason for the integral notation becoméitia clearer. The £” in the sum notation is
the Greek letter sigma that corresponds so an English “S&.ifitegral sign () looks like an extended
“S”. Similarly, the Greek letter DeltaX) corresponds to the English “D”, as in thé2” in our integrals.

5 Integral Evaluation Using Upper and Lower Sums

Going back to our simple examples,fifz) = 1 is the constant function, as illustrated in Figure 4 we can
see that the upper and lower sums will be the same, and willjbal ¢o the exact value of the integral.

f(x) = k)%? §§ fi(x) = kx§7§7
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Figure 8: Upper and Lower Sums f¢(x) = kx

A more interesting example is the linear functigfe) = kz (and we will assume thadt > 0). See
Figure 8. We can see th@tz) = kz obtains its minimum at the left end of each interval and otstétis
maximum at the right end of each interval.

If the interval froma to b is divided inton subintervals, then the value at the left end of intefval

fla+(i=1)(b—a)/n) = k(a+ (i = 1)(b—a)/n)
and the value at the right of intervais

fla+i(b—a)/n) =k(a+i(b—a)/n)

The lower sum is thus:
(n—1)(b-a)

kan+k(a+l)_Ta)Ax+k(a+2(bn_a))Ax+"'+/€(a+ p ) Az,
and the upper sum is:
k(a+ b_Ta)A:v +k(a+ 2(bn_ N Azt +k(a+ W)Aw—i— k(a+ ”(bn_ ) Ac.

A little algebra applied to the upper and lower sums yieldsxer sum of:

k(na + b_Ta(1+2+---+ (n—1)))Ax,
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and an upper sum of:
k(na+ "=%(1+2+ - +n)Ac,
n

whereAz = (b — a)/n.

We knowthatl +2+---4+(n—1) =n(n—1)/2andthatl +2+---+n = n(n+ 1)/2, so combining
the equations above, and doing some algebra, we have:

b
/k:vdgc < k
(n+1)

kxde < k(b—a)a—i—(b—a)QT)
n

IN
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b—a)? b—a)? b bh—a)? b—a)2
k(((b—a)a+( 2))—( 2n)) < [Tkede < K(((0-apa+’ 2>) (2n>)
2 a2, k(b—a)? b 2 a2, k(b—a)?
k(5_2)_ (Qn) = /akxdx = Kz (2n)

Notice in the final line above that the integ[ﬁ@j kxdz is bounded by the same valuk(b? /2 — a?/2)

but with a small additional term added to the right and subé@from the left. Notice that this term has
ann in the denominator, so asgets larger and larger, the error terms get smaller and smahd can,

in fact, be made to approach zero as closely as desired. Weadawtly have a formal proof here, but
the calculation above should make it clear that the uppeld@mer sums squeeze the Riemann integral
closer and closer tb(b?/2 — a?/2), which is exactly the value we obtained using the areas afigles

in Section 3, Equation 2.

With even more complicated calculations (but similar tostaised above), we can evaluate Riemann
integrals for any polynomial function af. In fact, it turns out that:

b pntl n+1
a
/ z"dx = — .
a

n+1l n+1

If you check back, you will notice that ievery example we have worked out in detail so far, there
corresponds to the functiof(z) another functiorf’(x) such that:

b
/ f(zx)dx = F(b) — F(a).

There are actually many possible valuestothat do this. One way to think df (z) is as the area under
the curve fronD to x. Then the area under the curve fram= a to x = bis just F(b) — F(a). When
you take calculus, you will spend a semester figuring out fodetermineF'(z) given f(x) — it is not
an easy problem.



6 A Morelnteresting Example

Using the observation in the last paragraph of the previeasmn, let’'s work out one more example of an
integral, but this time, let’s use a function where we domdw the answer. We will find the area under
the parabolgf(x) = 22 betweenr = a andz = b. We will simplify the problem by finding the area

under the parabola from = 0 to « = b which we shall callF'(b). Using the observation, the area from
x=atox =bwilbe F(b) — F(a).
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Figure 9: Area Under the Parabaja=

The areas represented by the upper and lower Riemann sursisaava in Figure 9. Imagine that there
aren subdivisions on the-axis from0 to a, each of lengttAz = a/n. As with the linear function, the
minimum heights are at the left of the intervals and maximanesat the right. A little work shows that
the lower Riemann sum is:

(Az)(0% + (Az)? + (2Az)? 4 - + ((n — 1)Ax)?) Z (kAx)?
k=0

Similarly, the upper Riemann sum is:

(Az)((Az)” + (2A2)° + -+ + (nAz)?) = (Az) ¥ _(kAx)?
k=1

Factoring out all the\x terms we have the following inequality:

n

n—1 a
(Az)? Z k* < / r?dx < (Az)? Z k2. (4)
k=0 0

k=1

We know that:

n(n+1)2n+1)
Z’fz 5



SO

“— , nn-1)@2n-1)
k2 = .
2 6

Thus, substituting/n for Az in the integral inequality Equation 4, we obtain:

a*n(n—1)(2n —1) < /axzdx < a*n(n+1)(2n +1)
= <

6n3 6n3
If we expand the fractions above we obtain:

ad a3+a3 </a 24 <a3+a3+a3
—— —+ — dr < — + — + —.
3 2n  6n% "~ J, -3 2n  6n?

As in the example with the linear function, the term of in&risa®/3. The other terms have andn? in
the denominator, and hence get tinyragets large. Thus:

a 3
/ 22dr = a—,
0 3

b 3 3
b
/Ide:——a—.
o 3 3

From which we conclude that:

7 Applications

First we'll take another look at traveling at a variable raftspeed- that we discussed in the introduction.

What really happens is thatchanges with time, so instead of being a constantis really a function of
t: r = r(t). Now the formulad = rt doesn’t work, but the following formula does calculate thgtahce
traveled between times andi,:

d= /t ’ r(t)dt. (5)

Don’t worry about thelt in place ofdz: imagine that you're using &axis instead of the usuataxis.

The reason this works can be made clearer by looking at thedie upper and lower sums. On small
enough intervals of time, the rate doesn’t change much,estother bound for the distance traveled in an
interval is the slowest rate in that interval multiplied b time spent in that interval, and an upper bound
can be similarly obtained using the the maximum rate in thigtrval. If we add together all these little
chunks of distance which will approximate the distance efehtire trip, we obtain the upper and lower
Riemann sums. As the number of intervals is increased, agiddtze made smaller, these lower and
upper limits on the distance will squeeze together to a iimgivalue which is just the Riemann integral
in Equation 5.

As a second example, work = forcedistance. As in the previous example, with a constant foroe,
just multiply the two. But if force varies with distance, yoeed to integrate. The gravitational force
between two objects with masses andm is Gmims/s2, wheres is the distance between them. The



numberG is just the gravitational constant. To move them apart frastadces; to so, here is the work

W required:
EP)
W= / Gm;des. (6)
S1 S

If you think of the entire work as being broken up into littleepes of work over each little piece of the
motion of distance\s, you will see that the upper and lower Riemann sums provideedl@and upper
bounds on the work required, and, as in the previous exaini@déwo squeeze together to a value which
is indicated by the integral in Equation 6.

Similar integrals can be written down for many, many exampliephysical calculations where the phys-
ical properties vary with time or distance.

8 General Properties of the Riemann Integral

In this brief introduction, there are many things we haveaoyered. Here are a few of them:

What if the functions take on negative values? Both posiivé negative values?

Whatifb < ain [° f(z)dz?
e What if the bounds andb are infinite or the function itself “goes to infinity”?

e What if the function is highly discontinuous?

In a calculus course, a lot of theorems are proved about tee&in integral, and some are “obvious”,

like the following:
b c c
/a F(z)dz + /b f)de = / F()da.

If the above equation is not obvious, it simply states thatttital area frona to c is the area fronu to b
added to the area fromto ¢, or in terms of Figure 10, that the total area that is indiddte the hashed

lines is the sum of area$ and B.
f(x)
A B 4\
a b [¢

Figure 10: Sum of Areas

Here are some other properties that are “obvious” with threect figures (which the author has not had
time to produce as of this printing).
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If k£ is a constant:

/ab kf(z)de = k/ab f(z)da.

For any two functiong (z) andg(x) that are integrable:

/ab(f(ac) + g(v))dr = /ab fz)dz £ /abg(:v)dx.
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