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1 History: Perspectve Drawing

You canlearnalot abouthow peopleview of the way the world works by examiningtheir art. In paintingsfrom the
middleagesthearrons of archerdravel in perfectlystraightlinesuntil they reachtheir peak,atwhich pointthey stop,
turnatasharpangle,anddropstraightto earth. Thisis prettyamazingsinceevery objectthatevery humanhasthrown
or shotsincethe beginningof time hastraveledin avery smoothcurve thatapproximates parabola.

Similarly, it wasnt until therenaissancthatdravingsandpaintingsbeganto represenpeoplefurtherfrom theviewer
smallerthanthosenearby. Again, it's surprising,sinceeveryonesincethe davn of man (and before, in fact) has
seenpeoplefurther away as smaller Of coursethere are overwhelmingpsychologicalreasondor this incorrect
representation—wegknow” that even thoughthe personis far away, he really remainsthe samesize. Drawingsin
which things further from the viewer (be they people,buildings, or mountains)are smallerare called perspectie

drawings.

Figurel: RailroadTracksin Perspectie

Now thatwe know how to draw in perspecitie, it is totally obviousthatit is the“correct” way to draw. We know that
if we look ata pair of railroadtrackson flat land going off to the horizon(seeFigure 1) they will appeaito meetin a
point, andalsothatthe ties underthe tracksappearo getcloserandclosertogetherin the distance gventhoughwe
know thatthey areevenly spacedn therealworld.

In fact,if you aregoodat the mechanicof painting,but have no senseat all of how to rendera scenein perspectre,
thereis a completelymechanicalvay to geta highly accurateendition. Insteadof a carvas,usea pieceof glass,and
keepingyour headin exactly the samepositior?, wheraveryou seegreenthroughthe glasswindow, paintgreenatthat
spotontheglass.Paintredwhereyou seered, etceteraandit’ s clearthatif you canmatchthecolorsexactly, you will
have painteda sceneonthe glassthatis in perfectperspectie.

If youimaginethelinesthatlight follows asit movesfrom thevariousobjectsto your eye throughtheglass light rays
from thetop andbottomof anobjectwill make ananglethatbasicallydetermineshesizeof the objectsimageonthe
glass.If thesameobjectis furtheraway, theanglewill be smaller sotheimageontheglasswill alsobesmaller This

1n fact, the painterGiotto who lived from approximatelyl 266to 1337wasthefirst to realizethattherelative sizesandshapef thingsshould
bemodifiedin paintingsto make themappeamorerealistic. Of coursehedidn’t know exactly how to dothis, sosomeof his paintingsappeaia bit
bizarre—therads somecorrectionfor perspectie, but it's doneincorrectly

2Technically you'll have to usejust oneeye, andkeepthateye fixedin space.



is the basicideabehindperspectie draving.

It is alsothe basicideabehindprojectve geometrywhich tells ushow the drawingsof objectsontheglassarerelated
to the positionsof the objectsin the realworld, to the positionof the glass,andto the positionof the eye. The name
“projective” comesfrom the factthatthe scenethatis beingdrawn is in reality being“projected” on the glass. You
probablythink of a projectorin the oppositeway, of course—aslide projectorshinedight from thelampthroughthe
slide (glass)to a screen.But if you replacethelampwith your eye andimaginethelight raysreversedandcomingin

from the objects they would projectanimageof thatobjectontheslide.

Thereis moreto projective geometryof course Justto hint ata moredifficult problem,imaginethatyou areapainter
of asceneasabove, but oneof thesubjectdn your scends anothemainterdoinga perspectie draving on hercarvas.
Whenyou draw on your carvaswhatsheis drawing, how is your pictureof herpicturerelatedto therealworld, since
it hasundegonetwo projections?And if this seemdoo far out, considerthis: the suncastsshadaevs on the ground,
which arejust projectionsof the objectson the “canvas” of theground.If you're a painterof a scenewith shadevsin
it andyouwantto renderthe shadavs correctly you arereally paintinga projectionof a projection.

Projective geometryis not just a subsebf Euclideangeometry It may seemsimilar sinceit seemdo dealprimarily
with theprojectionof Euclidearobjectson Euclidearplanes Butthatis notall it does.Think aboutourexampleof the
pair of railroadtrackscorverging onthe horizon. In your paintingof thetracks,thetwo linesrepresentinghemmeet
atapoint onyour carvas,but whatdoesthatpoint represenin therealworld? The answeiis thatit represents point
“infinitely far away” in the directionthatthe tracksare going (assumingof course thatthe world is really flat and
extendsforever). We cantell right avay thatsomethingstrangds goingon, sinceEuclideangeometryis notequipped
with arny pointsthatare“infinitely faraway”, but this exampleshows thatprojectve geometryhasno problemsat all
representinguchpoints(or at leasttheir projections).

Todayprojectivegeometnyis heavily usedn avery practicalway—everytimeyoulook atathree-dimensionalrawing
on your computerscreen.all the calculationsto producethat realisticimagewere calculatedusing the formulasof
projectve geometry

1.1 Example: The Pinhole Camera

A pinholecamergrovidesanothewery niceillustrationof perspectie. A pinholecameras justalight-tight box with
film attachedo oneinsidefaceandwith a pinholeon the oppositefacethatis covereduntil you wantto take a photo.
To take a photo,pointthe pinholein the correctdirection,uncoverit until thefilm is properlyexposedcoverit again,
andthenremove anddevelopthefilm in adarkroom.
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Figure2: An IdealizedPinholeCamera

Here,of coursewe’ll consideranidealizedpinholecameravherethepinholeis aninfinitely smallpointin aboxwith

infinitely thin walls in a universewherelight travelsin perfectlystraightlines. In the realworld, the pinhole hasto

have someareathe camerawalls somethicknessandwhenreallight passeshougha smallopeningiit is diffracted,
or scatteredlightly, dependingon the sizeandshapeof thehole.

In Figure2, point P is the pinholein the front of the cameraandfilm is attachedo the side of the box oppositeP.
Imagineyou aretaking a photoof theline on theright with points A4, B, ..., E markedonit. Light scatteredrom
eachpointgoesoff in every direction,but only raysof light aimedexactly atthe pinholewill beableto reachthefilm.
Thusthe imageof the point A is A’ on the film, andsoon. Notice thatthis reversestop andbottom,soif you kept
track of which endof the film wasup whenyou took the photo,thingstoward the bottomof the world would create



imagesowardthetop of thefilm. Similarly, left andright areswappedon a two-dimensionapieceof film.

A

Figure3: PinholeCamerawith a Complex Scene

In the realworld, of course,the objectsin the photodo not needto lie on aline parallelto the back of the camera.
They canbearnywhereatall in spaceasshavnin Figure3. Also noticethatwe have dravn aone-dimensionadlice of
the cameraandthefilm is two-dimensionalandobjectsof interestcanlie arywherein thethree-dimensionakorld.

It is instructive to think aboutrestrictedversionsof the camera.Whatif the cameras takinga photoof a ruler with
evenly-marledpoints?How will thosepointsbe spacedn thefilm? How doesthis changdf theruleris not parallel
to the cameraback?Whatif the camerabackis not parallelto thefront of the cameravherethe pinholeis?

Finally, noticethat our earlierexampleof paintingon a pieceof glassis “just like” a pinholecamerawherethe film
is in front of the pinhole (obviously a physicallyimpossiblecamera,but it shavs that the idea of a mathematical
projectionmakessenseno matterwherethe“film” is.

1.2 Aside: Invariance Under Transformation

Thisis alittle off the subjectsoit won't hurtto skip this section,but it is interesting.As you will learnasyou study
moreandmoremathematicstherearemary differentkindsof geometry Almost everyonelearnsEuclideargeometry
first, but thereis projectve geometrythat we’ll learnabouthere,aswell asvariousotherforms of non-Euclidean
geometry:hyperbolicgeometryelliptic geometryaffine geometryandsoon.

Oneniceway to think aboutall the differentgeometriess to look at the sortsof transformationshatareallowedand
to seewhat propertiesof the geometricfiguresarepresered underthosetransformationsFor example,if you allow
objectsto berigidly movedontheplane,or possiblyflippedover, youhave therelateddeaof congruencén Euclidean
geometry:two figuresare congruentif one canbe gottenfrom the otherby sliding it aroundon the plane,perhaps
rotatingit in the plane,or evenflipping it over.

Undertheseso-calledisometries” thingslik e lengthsandanglesarepresered.

In projective geometry the main operationwe’ll be interestedn is projection. What sortsof thingsare presered
betweena figure andits projection? The answeris that far lessis presered by this operation,but thereare certain
featureghatare. For example,lengthsandanglesaredistorted,but if threepointslie in aline beforethe projection,
they will continueto do soaftertheprojection.Similarly, if abunchof pointslie onany conicsection(circle,parabola,
ellipse,or hyperbola)their projectionwill alsolie ona conicsection,althoughnot necessarilyhe samekind. Points
on a circle may be projectedto pointson a hyperbola,for example. In fact, you've probablyseenthis happenat
home—Ilightfrom a bulb insidea circularlampshadenakesa hyperbolicshadav on a flat wall.

WhatotherpropertiesarepreseredundertheallowedtransformationsThatis a centraltopic in projectve geometry
andin fact, of arny type of geometry

2 A Tasteof Projective Geometry
Let's begin by looking at anancienttheoremof Pappus.

Theorem 1 (The Theoremof Pappus) Let ABC DEF be a hexagon with six distinct vertices such that points A, C,
and E lieon one line and points B, D, and F' lie on another. Let I be the intersection of AB with DE, let J be the



Figure4: Theoremof Pappus

intersection of BC' with EF', and let K be the intersection of CD with FA. Then I, J, and K liein a straight line.
See the left-hand drawing in Figure 4.

A coupleof comments:

1. Obviously the hexagonwe're talking abouthereis just a setof six pointsconnectedneto the otherby lines.
Sincetheverticeshaveto lie alternatelyontwo lines, it’s clearthatour figureisn’t goingto look muchlik e most
of thehexagonsyou're usedto which areusuallycorvex, andtheedgesaregoingto crosseachother If you play
with differentexamplesof suchhexagonsyou’ll alsoseethatwe aretalking aboutthe (infinitely long) linesthat
connectthe six points, not just the sggmentsthat connectthe lines. Sometimeghe intersectionsnentionedn
thetheoremaccuroutsidethe segments put the theorenstill holds.

2. Thecommentaboveis justatechnicality;moreimportantis thatthe theoremis simply not true. At leastit’s not
truein Euclideangeometrywithout somecaveats.For example,thereis no reasonthatthe pairsof linesabove
whoseintersectiondeterminepoints I, J, and K intersectat all—they may be parallel. Seethe right-hand
drawing in Figure4 wherethe line AF is parallelto theline CD. In fact, it's a good exerciseto drawv the
situationwhereall threesetsof thoselines areparallel,in pairs. But try to draw a situationwheretwo of the
pairsof linesareparallelandthethird pairintersects(Don't try too hard,though—it'simpossible.)

We canfix up thetheoremsothatit is truein Euclideangeometryby modifying the secondsentenceo be this: “If

noneof the pairsof lines AB and DE, BC andEF, or CD and F A areparallel,thenlet I betheintersection..”

With this modification,the Theoremof Pappusbecomes perfectlygoodtheoremin Euclideangeometry but aswe
shall see,this modified versioncontainslessinformation. We canadd additionalsentenceso the statemenbf the
theoremto recoverthis lostinformation,but the theoremwill thenneedto be statedasa collectionof cases.

If we arespeakingaboutprojective geometryhowever, the Theoremof Pappuss always true,exactly asstatedabove,
andtheresimply areno specialcasego consider

Let’s look at wherethe theorem(as statedabove) goeswrong in standardeuclideangeometry Supposeone of the
pairsof lines (let's say A andC D to be definite—seehe right-handdrawing in Figure4) are parallel,andhence
point K doesnot exist. If you draw a figurelike this, you will usuallyfind thatthe othertwo pairsof lines meetat
pointsin the Euclideanplaneso you candraw theline I.J, but you will alsofind thattheline I.J is parallelto F A
andC D. SoalthoughF A andC' D do not meet,you mightlik e to think of themas“meetingatinfinity”, andnotary
infinity, but ataninfinity in a particulardirection.

Or if you don't like this, think of the situationwhere FF A andC' D arealmostparallel. They meeta long waysaway
from the hexagon,andasthey getcloserto beingparallel,thatpoint of intersectiormovesaway fasterandfaster But
it continuedo lie ontheline IJ, sotheline IJ itself will getcloserandcloserto beingparallelto FA andCD as
theintersectiompoint moves.It’s sortof reasonabl¢althoughnot mathematicallyprecise)o think thatwhenthe point
doesfinally “get to infinity”, thethreelineswill beparallel.



Notethatthediscussiorof a“point atinfinity” is simply nonsensén Euclideangeometrybut it doesprovide a useful
way of visualizingwhat's goingon.
As we statedabove, it is alsopossiblefor all threepairsof linesto be parallel,soall threeof the“points” I, J, and

K are“at infinity”. Whathappensf justtwo of the pairsof linesareparallel? The answetis thatthis simply cannot
happen—ifary two pairsareparallel,thethird pair mustalsobe parallel.

Hereis arestatemenof thetheoremsothatit is truein Euclideangeometryandyet doesnotloseary informatior?:

Theorem 2 (Euclidean Theorem of Pappus) Let ABCDEF be distinct points forming a hexagon such that points
A, C, and E lieon one ling, and points B, D, and F lie on another. Let I be the intersection of AB with DE (if it
exists), let J bethe intersection of BC with EF (if it exists), and let K be the intersection of CD with F A (again, if
it exists). It may be that some, but not all, of points I, J, and K exist. There are three possible cases.

1. If all three intersections exist, then they lie on a straight line.
2. If any two intersections do not exist, then the third one does not exist either.

3. If one of them (say I) does not exist, then theline JK isparallel to AB andto DE.

Many theoremdrom projective geometryfollow the samepattern—thg areusuallyalsotruein Euclideangeometry
exceptwhensomethingd‘'special” happenssuchaslines beingparallelsothatcertainpointsfail to exist. But in those
casessomethingspecialalsohappendo the Euclideanfigure,andthetheorenstill seemso betrueif we allow some
sloppy thinking about“points atinfinity”.

As agoodexercisejook atthefollowing famougheoremfrom projectve geometrythatis usuallytruein theEuclidean
plane,but not always. Try to seewhenandwhy it fails, andthentry to rewrite the theoremso thatit is truein all
Euclideancasesandsothatit tellswhathappensvhensomethingd'special” occurs:

Figure5: Desagues'Theorem

Theorem 3 (Desagues’ Theorem) Let AABC and AA’B’C’ be two triangles in the plane. Suppose that the lines
AA’, BB',and CC" all meet at apoint. Let I, J, and K betheintersectionsof AB and A’B’, of BC and B'C’, and
of CAandC'A’. Then 1, J, and K all lie on the same line. See Figure 5.

As usual,it is avery goodideato draw afew diagramsof your own andto play aroundwith them.

3 Two Key Axioms of Projective Geometry

It is, of course possibleto make a completelist of the axiomsof projectve geometryin exactly the sameway asis
donefor Euclideangeometry Sinceprojective geometryis usuallya full semestetniversity course thereis no way

3In fact, it doeslosea tiny bit of information, even asstatedbelawv. In projectire geometry therecanbe “points at infinity” andthe theorem
continuego holdin the projective senseevenwhenoneor two of the verticesof the hexagonlie atinfinity.



to presenta detaileddescriptionof all theaxiomsandhow they all work togetherin asmallarticlelik e this one.Many
of the axiomsarethe samefor projectve and Euclideangeometry It is, however, very usefulto look at the axioms
thathighlight the major differencebetweerthetwo geometries.

Herearetwo very importantaxiomsfrom projective geometry At first glance,they appearto be valid in Euclidean
geometryaswell:

1. Givenary two distinctpointsin a plane thereis auniqueline thatlies on bothof them.

2. Givenary two distinctlinesin aplane thereis auniquepointthatlies on bothof them.

In Euclideangeometry theres obviously a problemwith the secondaxiom—uwhatif the two lines happento be
parallel?Thenthereis no point thatlies on both of them. The correspondingxiomfor Euclideangeometryincludes
anothemphrasen the secondaxiomthatsayssomethindik e, “unlessthetwo lines areparallelin which casethereis
neverapointthatlies on bothof them?

3.1 Models of the Axioms

If you've never seenprojective geometrybefore,you’re probablythinking, “How canaxiom 2 abose make sense?
Whataboutparallellines?The authorof this paperis crazy’

The problemis thatyou alreadyhave a firm ideain your mind of whatthe words“point” and“line” mean,andthat
ideais almostcertainlyEuclidean After all, it's probablythe only way you've ever thoughtaboutthosewords.

But wordslike “point”, “line”, and“plane” in mathematicsre“undefinedterms”. The only thingswe canofficially
know aboutthemarethingswe canprove aboutthemfrom the axiomsusinglogic. Obviously it'sagoodideato have
amentalmodelto helpusthink aboutthem,but in anofficial mathematicaproof, you cant useyour mentalmodelin
theargument—yourerestrictedto usingtheaxiomsandpurelogic.

Perhapst would be easieiif otherwordshadbeensubstitutedLet’s look atthe sameaxiomsagain:

1. Givenary two distinctpratzelsin a pongold,thereis a uniquelorperthatlies on bothof them.

2. Givenary two distinctlorpersin apongold,thereis auniquepratzelthatlies on bothof them.

There!Now it's not sohardto believe, is it?

Actually, imaginethatyou'retalking to aMartianwho is extremelygoodat mathematicshut who only took freshman
Englishfor onesemesteat DiemosUniversity She! neverlearnedhetermsfor standaranathematicabbjects soshe
justuseghe Martiantermwhenshedoesnt know the English.

Heres asystemshemightbetalking about.It consistof apongold,a setof threepratzelg{a, b, c}) anda setof three
lorpers({a, 8,7}). We will usethesymbolt to mean‘lies on”. Here's thecompletedescriptionof the system:

Pongold: = {a,b,c,a,0,7}

Pratzels: = {a,b,c}

Lorpers: = {a,8,7}
Relations : aFoa,bFabkp

ckB,eck~v,abk~
alta,akbfFb
BrFe,yFe,vka

It's nottoo hardto checkto seethatbothaxiomshold (try drawing a—surprise—picture glthoughthe systemabove
doesnt look very geometric. The point is thatthe systemabove is a modelfor the axioms,soif thosewerethe only
two axioms,thenwhateser canbe provedfrom themwill betrue of the systemabove (aswell asof any othersystem
thathappenso satisfytheaxioms).

4Actually, “She” is just the closestapproximation—Martiansomein threesexes. But the reasonher Englishis pretty goodis that with the
longerMartianyear the semestertherearecorrespondinglyonger



Is thatthe only systemthat satisfiesour Martian friend’s axioms?No—thereare,in fact,aninfinite numberof them!
Hereis a systemthatis far moreinteresting(andfar moregeometric).We have learnedfrom previous corversations
with her that her job on marsis asa sort of large-scalesurveyor, and she designsroadsthat travel for very long
distance®nthe planet. The planetis basicallya sphereandthe surfaceis very smooth,soall roadsgo in asdirecta
line aspossiblebetweerthe pointsthey aremeantto connect.

On a spherethe shortestdistance(on the surface)betweenwo pointsis alonga “greatcircle route”. A greatcircle
is theintersectionof the surfaceof the spherewith arny planepassinghroughthe centerof the sphere.On earth,the
greatcirclesincludethe equatorandany of the lines of longitude (the north-southlines). Otherthanthe equator it

doesnotincludeary latitudelines, sincethe planespassinghroughthosecirclesdo not passhroughthe centerof the
earth.Of coursethesearejust very specialgreatcircles;arny planethroughthe centerof the earth(atarny weird angle)
malkesa greatcircle asit cutsthesurface,sothereareaninfinite numberof greatcircles.

In fact,if you'veeverbeenonanairplanefor alonginternationaflight, you’ve probablynoticedthatthe paththeplane
takesdoesnot appeartto be a straightline on the mapthatyou find in the seatpocketin front of you. That’s because
your routeis probablycloseto a greatcircle route. For example,if you fly from SanFranciscao Rome,you'll find
thatthe planegoeshigh over Greenlandwhich is a heckof a lot furthernorththaneitherSanFranciscoor Rome. If
you drew the pathon a globe,you’d find that a plane(a Euclideanplane,not an airplane)cutting throughthat path
would go (approximatelyxhroughthe centerof the earth,sinceit is approximatelya greatcircle.

Anyway, what our Martian friend meansis this: a pongoldis just the (spherical)surfaceof Mars. A lorperis just
ary greatcircle on the surfaceof the planet. A pratzelis wheretwo lorpersmeet. But try to visualizewheretwo
greatcirclesmeet—thg meetat two Euclideanpoints exactly oppositeeachotheron the planet. In otherwords, a
line connectinghetwo pointswould passthroughthe centerof the planet. Soa pratzelis anobjectthat containsary
two diametricallyopposedointson the surfaceof Mars. It may not be obvious (but it is true—seebelow) thatgiven
ary two differentsuchpratzelgpairsof points),thereis exactly onelorper(greatcircle) passinghroughboth of them
(throughall four pointsof thetwo pratzels).

Thisis a perfectlygoodmodelof thetwo axioms.If you think aboutit, ary two differentgreatcirclesmust intersect.
If the greatcirclesaredifferent,they mustcorrespondo two differentplanespassinghoughthe centerof the planet,
andwe know thattwo planesintersectin a Euclideanline. Both planesgo throughthe centerof the planet,so the
centerof the planetmustbe on the line of intersectionof the two planes.Therefore sincetheline of intersectionof
thetwo planesgoesthroughthe centerof thespherejt musthit the surfacein two diametrically-opposegoints(or, in
the Martian’swords,in a pratzel).

Justto completethe algument let’s show thatany two pratzelsdeterminea greatcircle (a lorper). If we draw aline
connectingeachpair, sincethe pointsarediametricallyopposite the lines mustpassthroughthe centerof the planet.
Sothetwo linesintersectat the center But ary two distinctintersectindinesdeterminea plane,andwherethatplane
cutsthe surfaceof the spherds therequiredlorper(greatcircle).

Sosheis makingsensefterall—andin a very geometricsortof sensetoo.

4 A Model for Projective Geometry

Let’s seeif we cancomeup with a usefulmodelof projectve geometrythat satisfieshe two axiomsabove, andyet
allows usto usesomeof our intuition aboutEuclideangeometry

Heres whatworksfor me (but your mileagemayvary):

o Startwith thestandardeuclidearplanewith its normalpointsandlines. Every pointonthe Euclidearplanewill
beapointin our projective geometry(but we will addsomeadditionalpointslater).

e EveryEuclidearline ontheplaneis parallelto aninfinite collectionof otherlines. All theseparallellinesgoin
thesamedirection(or if you prefer, all thesdineshave the sameslope).For every direction(or for every slope),
adda “point atinfinity” thatcorrespondso this direction. Add this onepointto every oneof thelineshaving
thatslopeto make new linesin our projective geometry

e For every direction, thereis only one“point at infinity”. It doesnot matterthatthe line seemgo go in two
directionsjimaginethatthelines“wrap around”,meetingat the point atinfinity.



o Finally, take all the pointsatinfinity, andcreateonenew line thatconsistsf all (arny only) thosepoints. We'll
call thisthe*line atinfinity”.

That'sit.
Now, we needto checkthatour two axiomshold.

First of all, do every two pointsdeterminealine? Well, if thetwo pointshappeno be originally standarcEuclidean
points,thenthe standardcuclidearline (plusthe oneadditionalpointatinfinity) senesperfectlywell asaline passing
throughbothof them.It’ s alsoclearthatthisis the only line thatwill work.

If oneof thetwo pointshappendo bea pointatinfinity, thenchooseastheline the onepassinghroughthe Euclidean
point,andgoingin thedirectionof thatparticularpoint atinfinity.

Finally, if bothof the pointsarepointsat infinity, thenwe know thatthe line atinfinity passeshroughboth of them.
No otherline will work, sinceall the othersare extendedEuclideanlines, which canonly have one slope,andtwo
differentpointsatinfinity would representwo differentslopesor directions.

Secondgdoary two linesdetermineapoint?If thetwo linesarebothstandardeuclidearines(with anadditionalpoint

each),they areeitherparallelor not (in the Euclideansense).If they arenot parallel,they intersectin the standard
Euclideanpoint (which is a pointin our modelof projectve geometry).They do not sharethe point at infinity since
if they intersectthey have differentslopes,so the two projectie lines meetat oneandonly onepoint. If they are

parallel(in the Euclideansense)thenthey bothhave in commonthe pointatinfinity thatwe addedfor thatparticular
direction.

Finally, if oneof thetwo lineshappenso betheline atinfinity which containsall thepointsatinfinity, thenin particular
it will containthe point at infinity thatwe addedfor ary otherEuclideanine. Sinceevery augmentedtuclideanline

is augmenteavith only a singlepoint atinfinity, theintersectiorof theline atinfinity with ary otherline is restricted
to this singlepoint atinfinity.

Soour modelsatisfieghe two projective axioms,andplaneprojective geometryis a valid systemto consider

It'sagoodideanow to go backto the Theoremof PappusandDesagues’ Theoremto seethatunderthis model,the
simplestatementsf boththeoremsareexactly theoremsn projective geometry Do this now.

5 Duality

Let'sreturnto our Martianfriend’s pair of axioms.We've decidedthatalorpermeanstine” (or atleastour new funny
kind of line), andpratzelmeans'point” (in the samefunny sense).

Or doesit? Maybelorpermeans‘point” andpratzelmeans'line”. If you look carefully at the axioms,andreplace
every instanceof “lorper” with “pratzel” andvice-versa,both axiomsreadexactly the same,althoughthe first and
secondaxiomsarereversed!

Sohow canwe tell which is which? The answeris, we cannot! Thereis absolutelynothingin projective geometry
thatmakesa point behae differentlyfrom aline (from the point of view of the axioms). If you begin with ary valid

theoremaboutpointsandlines,andyougothroughandcrossout everyinstanceof “point” andwrite “line” anddothe

reverseprocessreplacing‘line” with “point”, you’ll obtainanothervalid theorem.

Soprojectivegeometryis muchcoolerthanEuclideargeometrysinceeverytime you manageo prove atheoremyou
havein factproventwo of them. Thisis called“duality”.

We will look at one pair of dual theoremsbut keepin mind that thereis nothing specialaboutthesetwo—every
theoremin projective geometryhasa dual theoremthat's obtainedfrom the first one by swappingthe words for
“point” and“line”.

5.1 Pascals Theorem

The following theoremis to be interpretedin the projective sense—paralleines meetat the appropriatepoint at
infinity, etcetera.(In fact,the carefulstudenwill ask,“What in the heckis acircle in projectve geometry?A circle
certainlyisn’t preseredunderprojection—acircle canlook like anellipse,parabolapr hyperbold. Well, thefactis
thatPascalstheoremin factappliesaslongasall six verticesof the hexagonlie onary conicsectionnotjustacircle.)



Also notethatthis (andit’s dual)is a projective theorem It canbewrittenin a Euclideanform, but caremustbetaken
to describewhathappensn the caseof parallellines, et cetera.

Figure6: Pascals Theorem

Theorem4 (Pascal's Theorem) Let ABCDEF be any hexagon such that the distinct vertices A, B, C, D, E, and
Flieonacircle. Let AB and DE intersect at point I, let BC and EF intersect at J, and let CD and F A intersect
at K. ThenI, J,and K all lie on the sameline. See Figure 6.

We won't provethis theoremput it seemgo betruefrom thefigure,andif you draw otherexamplesyou’ll seethatit
seemgo hold in thosecasesaswell.

5.2 Brianchon’s Theorem

Sowhatdoesthe dualof Pascals Theoremlook like? Thedualis called“Brianchon’s Theorem”,andheresthedirect
“translation”. To makeit slightly easierto read,we uselower-caselettersfor lines,andif a andb aretwo lines,we’ll
useab to indicatethe pointthatlies attheintersectiorof the two.

Figure7: Brianchons Theorem

Theorem5 (Brianchon’s Theorem) Let abedef be any hexagon such that the distinct lines a, b, ¢, d, e, and f are
tangent to a circle. Let i be the line connecting points ab and de, let bc and e f lieon theline 5, and let ed and fa lie
onthelinek. Thent, 7, and k all meet at a point. See Figure 7.

Checkthat Brianchons theoremis in fact the dual of Pascals Theorem,andit’s alsoa goodideato draw a few
examplesto corvince yourselfthatit’s true. Finally, checkto seethatit’s true in the pure projectve sense—when
someof thelinesintersectat pointsatinfinity.



If A andB aretwo theoremsandif A4 is thedualof B, thenB is thedual of A. Thisis probablyobviousto you, but
we'll stateit herejustto make sureyou’re awareof it.

Remembetthat thereis nothing specialaboutthe fact that Pascals (or Brianchons) Theoremhasa dual—every
theoremin projectve geometryhasadual. Try to find thedualsof the Theorenmof Pappusandof Desagues'Theorem.
Draw somepicturesto corvinceyourselfthatyou've statecthe dualtheoremsorrectly

6 HomogeneousCoordinates

The modelof projective geometryin the previous sectionmay be nice for visualization,but it is not too useful for
making calculations,which is requiredif the goalis to find an exact mappingbetweenthe coordinatesf objects
beforeandaftera projection.

Obviouslywe cannofustusethe standargairsof cartesiarcoordinateshatwe usein the Euclidearplanesinceevery
possiblepair of realnumbersexactly coverthe plane,but thereareno extra pairsleft overto identify thenewly added
pointsat infinity. We can, however, make someprogressby looking at thosecartesiancoordinatesas points move
“towardinfinity” alongstraightlinesin agivendirection.

(20710)

(10,5)

04.//

(25)

Figure8: CartesiarCoordinates

As anexample,considerthe following points: (2, 1), (4, 2), (6, 3), (20, 10), (200, 100), andsoon, wherethe second
coordinates alwaysdoublethefirst. If we plot thesepointson the standardplane(seeFigure 8), asthe coordinates
getlargerandlarger, thepointsmove towardinfinity alongtheline 2y = x. We’d like to have apointapointatinfinity
somethindike (200, 00), but evenif therewereanoo in therealnumberswe’d needa 200 aswell (andlots of other
sizesof infinity to correspondo every otherpossibledirection).

HeresanothempproachAll thepointsalongtheline above canbewritten (2- a, 1 - &), wherea is arealnumber As
a getslarger, the pointsmove off toward infinity. At first, this doesnt seemto make muchprogresssincewe won'’t
getto the pointwe wantuntil a getsto infinity, which it neverwill, quite.

But we cando somethingsimilar—considempointsof theform (2/¢, 1/¢), andthistime, letc movetowardzero.Again,
we can' let ¢ getto zerosincedivision by zerois undefinedbut at leastc is headedoward zero—areal numberthat
existsratherthanoo—anumberthatdoesnot.

6.1 Definition of HomogeneousCoordinates

Hereis anideathatdoes work: usethreecoordinates Every point on the projective planeis representethy a setof
threenumbersvhereatleastoneof thethreenumberds non-zero.As long asc is not zero,we will think of the point
(a, b, ¢) asrepresentinghe standarcEuclideanpointwith coordinatega/c, b/c).

Thefirst problemwe encounteis thatthe samepoint canhave morethanonesetof coordinatesssociatedvith it. For
example,thethreepoints(2, 1, 1), (4, 2, 2), and (200, 100, 100) all correspondo the sameEuclideanpoint (2, 1). Is
this goingto causeseriousproblems?
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It shouldnt—afterall, we do exactly the samething all the time with rationalnumbers.Nobody seesarny problem
with thefactthat1/2 = 2/4 = 100/200, eventhougheachof themhasdifferent“coordinates”. (We usually call
the “coordinates”of rationalnumbershe numeratormnddenominata) It is just a corventionthatwe useto the“ /”
symbolto representational numbers. We could have written fractionsasfollows: 1/2 = (1,2), 2/4 = (2,4), et
cetera.

In otherwords,if a/b is ary normalfractionandc is ary non-zerorealnumber a/b and(ac)/(bc) represenexactly
thesamenumber In thesameway, if (z,y, w) arethehomogeneousoordinategfor ary pointin theprojective plane,
ande is any non-zeroreal number then (az, ay, aw) representgxactly the samepoint. In the sameway thatwe
normally reduceour rationalnumbergo lowestterms,we generallychoosea simplerepresentatie for homogeneous
coordinatesvhenwe can.If w is notequalto zero,we canmultiply every coordinateby 1/w to obtaintheequialent
point (z/w,y/w,1). Similarly, if you have a Euclideanpointwith coordinategz, y), you canfind the corresponding
homogeneousoordinatedor that point by addinga 1 asthe final coordinate: (z,y) (Euclidean)correspondgo
(z,y,1) (homogeneous).

Now let’s look againat whatwe weretrying to do above. We noticedthatthe point (z/w, y/w) moved out toward
infinity alongaline asw movedtowardzero.But the Euclideanpoint (z/w, y /w) correspond$o the projective point
(z/w,y/w,1) which representgxactly the samepoint as(z, y, w). In projectve homogeneousoordinatesyve can
let w go all theway to zero,andwe obtaina “point atinfinity” with homogeneousoordinategz, v, 0).

In fact, any pointwith zeroasthethird coordinatewill correspondo a point atinfinity, andall thosepointstogether
will lie onthe“line atinfinity”. Thetwo pairsof homogeneousoordinategz, y1,0) and (22, y2, 0) ontheline at
infinity representhesamepointonly if thereexistsa non-zeronumbera suchthatz; = azs andy, = ays.

Remembethatatleastoneof the homogeneousoordinatesnust be non-zero:(0, 0, 0) is not a valid setof homoge-
neouscoordinateandit doesnotrepresena pointin our projective plane.

6.2 Calculationswith HomogeneousCoordinates

OK, sowe know how to relateour new homogeneousoordinatesvith pointson theold Euclideanplaneandwith the
new pointsatinfinity. Sowhatis the equationof aline? How canwe tell if apointis onaline? How canwe find the
intersectiorof two lines?How canwe tell if threepointslie onthesameine?

In high schoolalgebrayou probablylearnedhatthe equationof aline is givenby theformula:
y=mz +b, @)

wherem andb arereal numbers.m is the slope,andb is the y-axisintercept. A point (z,y) lies on thatline if and
only if equationl holds.

Theonly seriousdravbackof equationl is thatthereareaninfinite numberof linesthatit is unableto representAny
line thatis parallelto the y-axishasnorepresentatiobecaus¢he slopeis “undefined”. (And of coursenow thatwe're
learningaboutprojective geometrywhenerer we seetheword “undefined”,we arethinking to oursehes,“infinite”.)

Hereis analternateequationof a (Euclidean)ine thatworksalot better:
Az +By+C =0, )

whereA, B, andC arerealnumbersandeitherA or B is non-zero.

This form of the equationfor theline hasa hugeadvantagen thatit alsoallows verticallines. If B = 0 andA # 0
thenthe equationbecomes: = —C/A, andthisis the equationof theline parallelto the y-axishaving z-coordinate
—C/A everywhere.

It' snotquiteright for ourhomogeneousoordinateshowever, sincein generah projective pointhasthreecoordinates:
(z,y,w). A tiny modificationfixeseverything. Hereis the equationfor a completelygeneraline in the projective
plane:
Az + By +Cw =0, 3
S5Notice thatwe tendto usew for the extra coordinateratherthanz. This is becausave dont wantto getconfusedby the factthat (z, y, 2)

usuallyrepresents pointin normalthree-dimensiongtuclideanspace.Whenwe look at three-dimensiongbrojectve space(which will require
four coordinates)we will write generapointsin thatspaceas: (z, y, z, w).
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whereA, B, andC arerealnumbersandnotall threeof themarezero.

First of all, equation3 worksfine for the standarcEuclideanpoints. The Euclidean(z, y) is normally representeth

homogeneousoordinatess(z, y, 1), andsincethew coordinatds 1, equatior3 reducego Az + By + C = 0 which
is justwhatwe hadin the Euclideanplane.If we happerto usea non-standardepresentatiofor a point (saywe use
(az, oy, a), wherea # 0 for the Euclideanpoint (z,y), it worksjustfine: aAz + aBy + aC = 0 is the sameas
Az + By + C = 0 since(beingnon-zero)we candivide throughby «.

But equation3 alsoworks perfectlyfor pointsatinfinity andcanrepresentheline atinfinity aswell.

First let's checkthatthe pointsat infinity work. If Az + By + C = 0 is the equationfor a standardeuclideanline,
thenthe point at infinity thatwe have to addto it to make a projectie line is this: (—B, 4, 0) (checkthatthisis the
case).If weplugz = —B,y = A, andw = 0 into equation3, we obtain: A- (-=B) + B- A+ C -0 = 0 whichis
satisfiedso(—B, A, 0) liesontheprojectieline, asit should.

Secondwhatis the equationfor theline atinfinity? Theansweris: 0-z + 0-y + 1 - w = 0. Every point atinfinity
will haveits w coordinatesqualto zero,soit will look somethindike this: (a, b, 0). Substitutethis into the equation
for our proposedine atinfinity, andwe obtain:0-a + 0- b+ 1 -0 = 0. Again, it is satisfied.

To becompletelysureour systenmakessensewe shouldalsocheckthatthe pointatinfinity for aline doesnotsatisfy
the equationfor any otherline with a differentslope,andthat pointsnot at infinity do not lie on theline at infinity.
Thesearevery easyto do, but make sureyou know how to do them.

6.3 Duality, Again

Soaprojectiveline is specifiedoy exactly threerealnumbersatleastoneof which is non-zero We canthuswrite the
equatiorof aline as:[4, B, C]. If ageneraprojective pointhascoordinategz, y, w), whereatleastoneof thethree
numberss non-zerothenwe know thatthe conditionthatmustbe satisfiedfor point (z,y, w) to lie online [4, B, C]

isthatAz + By + Cw = 0. For now we're usingthe squarebracketsanduppercasdettersto indicatecoordinate of
aline, andregularparentheseandlower-casdettersto represenpoints.

Now, supposé hadgottenmixedup in the previousparagraphandreversedthewords“point” and“line”. Would the
paragraplstill betrue?Readit againandseethatit is absolutelyunchangedn meaningf you reversethetwo words.
If you arenot told which objectsare pointsandwhich arelines, thereis no way you canfigure out which is which
from theaxioms.This is anothemway to seethatduality works.

Actually, the only problemwith exchanginghewords“point” and“line” is theappearancef thesquarebracletsand
parenthesesTo do the exchange you have to think of pointsasbeingwritten with squarebracketsandlines with
parentheseBecausef theduality, it seemgointlessto write pointswith parentheseandlineswith squarebraclets.
If we justwrite everythingwith parentheseshe duality is evenmoreobvious.

And by theway, we couldhave just pulledthedefinitionin thefirst paragraplin this subsectiorout of theair andsaid,
“Hereis amodelfor projective geometry You cancheckit againstll theaxiomsof projectve geometryandseethat
thesetriples of numberdnterpretedaspointsandlinessatisfyall theaxioms.

6.4 A few morerelationships

If you know arything aboutthree-dimensionalectors,it is quite interestingto learnthat variousvectorand matrix
operationnthehomogeneousoordinate®f a projective pointhave very interestinggeometrianterpretations.

If you don't know anything aboutthree-dimensionalectors,herearethe definitionsof two of the moreinteresting
operations,describedonly in termsof arithmetic operationson the coordinates. If Vi = (z1,11,21) andV, =
(z2,y2, 22), thenthedot-produciof V; andVs is definedto be:

VieVo = z12a + 11y2 + 2129,
andthe cross-producis definedasfollows:
Vi X Vo = (3122 — 2192, 21%2 — 2221, T1Y2 — T2Y1)-

Notethatthe dot-productakestwo three-dimensionalectorsandreturnsa realnumber(usuallycalleda “scalar”, as
opposedo a*“vector’ quantity). The cross-producalwaysreturnsa vectorquantity
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Now, to applythesedefinitionsto projective geometrylet P, = (z1,y1,w1) andPy = (2, y2,w2) betwo projectve
pointsandlet L; = (4, B1,C1) andL, = (A4, Ba, Cs) betwo projectivelines.

We have alreadyseerthatif point P, lieson L, thatis equivalentto P, e L; = 0.

Heres aninterestingexercise:Show thatthe equationof theline thatpasseshoughP, andP; is givenby P, X Ps. It
isn't difficult—justlist outthe coordinatesandmalke certainthat P, and P lie ontheresultingline (andthe previous
paragraptshovs you how to checkthat).

Here's anothelinterestingexercise:Shav thatthe coordinate®f the pointthatlies ontheintersectiorof two lines L,
and L, is givenby Ly x Ls. Don’t work too hard—youalreadyprovedit if you solvedthe problemin the previous
paragraphRemembeduality?

6.5 Matrix Transformations

Finally, andthisis abit beyondwhatis coveredin therestof this paperheresacleanwayto list all possibleprojectve
transformationslit requiresthatyou know how to multiply a vectorby a matrix. If you don't, hereis the formulafor
multiplying athree-dimensionalectorby a3 x 3 matrix:

A B C
(z,y,w)| D E F | =(xA+yD+wG,zB+yE+wH,zC + yF +wl). 4)
G H I

If the3 x 3 matrix aboveis non-singulaf(if it hasaninverse,or equivalently if its determinanis non-zero) thenthe
operationabove representa valid projective transformation.

Whatis truly amazingis thatsucha hugecollectionof “standard”transformationgrejust specialcasef projective
transformationsincludingrotation translationscaling shearingandperspectie projections If youhaveamatrixthat
representsa translationandanotheithatrepresentsa rotation,the productof the two matricesrepresentshe operation
of rotationfollowedby translation.Thedetailsarebeyondthe scopeof this paper;seeany bookon computergraphics
for very practicaldetails.

7 OneDimensional Projective Geometry

In this paper we've only looked at the projective plane.Onecanconsidemrojective spacesn any numberof dimen-
sions,andthe equationswill all be similar. Three-dimensionatomputergraphicsusesthree-dimensiongbrojective
spaceg(with 4 homogeneousoordinates)and higherdimensionakpacesrealsoreasonabléo consider Thingsdo
get complicatedin threeand more dimensionsandto learnaboutthem, it is probablya goodideato look bothin
mathematicdooksandin bookson computergraphics sincethe computergraphicsbookstake a very practicalview
of thesubject.

Butit is alsointerestinglandvery easyto do)to analyzea one-dimensiongbrojective spacgwith only 2 homogeneous
coordinates)That'swhatwe’ll doin this section.

The nicestthing aboutone-dimensionaprojective geometryis that you candraw pictureson a piece of paperthat
completelydescribethe projections. For example,figure 9 illustratesa projectionof a one-dimensionaline onto
another

In this particularexample,theline with evenly-spaceshumbersonit ontheleft is projectedon the numberedine on
theright. The centerof projectionis the point O. You canseethatthe point 1 is projectedto the point 0, that2 is
projectedon 2, that3 is projectedto 5, andsoon. Of coursemostof the otherinteger pointsare projectedto points
withoutintegercoordinates.

If you think aboultit, this is exactly the one-dimensionahnalogof two-dimensionaprojections—of(2-dimensional)
planesontoplanesin three-spaceln this case (1-dimensional)inesareprojectedontolinesin two-space.

If youaregiventheequation®f thetwo linesandthecoordinate®f thepointof projection,it’s clearthattheprojection
is completelydeterminedandoneof thethingswe’ll look atin this sectionis the classof projectionsghatarepossible
givenarbitrarylocationsof thelinesandof the point of projection.In fact,we’ll evenallow the point of projectionto
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Figure9: OneDimensionalProjection

beapointatinfinity, aswe should.

Justaswe did in the two-dimensionakase,we’ll have to extendthe Euclideanline to a projective line, but in this
casewe only have onedirectionto go, sowe only needto adda single“point atinfinity” to turna Euclideanine into
a projective line. Looking backat figure 9, you canseethattheline from O throughthe point 7 on the left line is
approximatelyparallel(well, actuallyexactly parallel)to theright line, andsowill neverhit it. In fact,this projection
maps7 to the“point atinfinity”.

Usingsometechniqueshatwe’ll derive later, hereis the formulafor the projectionabove:

_ 10z -10

P(x) a

)
It'seasyto testthat P(1) = 0, P(2) = 2, andthat P(3) = 5. You canalsoseethatif youtry to evaluateP(7) youget
a denominatof zerowhich doesnt exist in the realnumbers.But if you examinewhathappengo P(z) asz gets
closeto 7, you canseethat P(z) getsverylarge,soit seemdo “get closeto infinity”.

If youlook backat equation4 andseewhatit amountsto for standarcEuclideanpointswith coordinategz,y) (and
thereforehomogeneousoordinategz, y, 1), we obtain:

o = Az +Dy+G

Ce+Fy+1
, Bzx+Ey+H
Y 7 Co+Fy+1

If we tossoutthey coordinatefrom the equationsabove, we obtainsomethingvery similar to equatiorb. In fact,the
mostgenerapossibleprojective transformatiorof aline into aline is givenby theformula:

Az +B

P@) =61

aslongasAD — BC # 0. Thisfinal conditionthat AD — BC # (0 is necessaryptherwisenumeratomnddenominator
arejust multiplesof eachotherandthe projectionwill take every pointontheline to a constanpoint.

61f we dont allow projectionsfrom the point at infinity, we cant even have anidentity projection. With the point at infinity, it's easy—ma&
thelinesto beprojectedto eachotherbothparallelto the y-axisandthe point atinfinity to bein thedirectionof thez-axis. Thenall the projection
lineswill beparallelto thez-axis,andwe’ll obtainthe desiredresult.
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