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1 History: PerspectiveDrawing

You canlearna lot abouthow peopleview of theway theworld worksby examiningtheir art. In paintingsfrom the
middleages,thearrowsof archerstravel in perfectlystraightlinesuntil they reachtheirpeak,atwhichpoint they stop,
turnatasharpangle,anddropstraightto earth.Thisis prettyamazing,sinceeveryobjectthateveryhumanhasthrown
or shotsincethebeginningof time hastraveledin averysmoothcurve thatapproximatesaparabola.

Similarly, it wasn’t until therenaissancethatdrawingsandpaintingsbeganto representpeoplefurtherfrom theviewer
smallerthanthosenearby1. Again, it’s surprising,sinceeveryonesincethe dawn of man(andbefore,in fact) has
seenpeoplefurther away as smaller. Of coursethereare overwhelmingpsychologicalreasonsfor this incorrect
representation—we“know” that even thoughthe personis far away, he really remainsthe samesize. Drawings in
which things further from the viewer (be they people,buildings, or mountains)are smallerare called perspective
drawings.

Figure1: RailroadTracksin Perspective

Now thatwe know how to draw in perspective, it is totally obviousthatit is the“correct” way to draw. We know that
if we look at a pair of railroadtrackson flat landgoingoff to thehorizon(seeFigure1) they will appearto meetin a
point, andalsothat the tiesunderthetracksappearto getcloserandclosertogetherin thedistance,eventhoughwe
know thatthey areevenlyspacedin therealworld.

In fact,if you aregoodat themechanicsof painting,but have no senseat all of how to rendera scenein perspective,
thereis a completelymechanicalway to geta highly accuraterendition.Insteadof a canvas,usea pieceof glass,and
keepingyourheadin exactly thesameposition2, whereveryouseegreenthroughtheglasswindow, paintgreenat that
spotontheglass.Paint redwhereyouseered,etcetera,andit’sclearthatif youcanmatchthecolorsexactly, youwill
havepaintedasceneon theglassthatis in perfectperspective.

If you imaginethelinesthatlight followsasit movesfrom thevariousobjectsto youreye throughtheglass,light rays
from thetopandbottomof anobjectwill makeananglethatbasicallydeterminesthesizeof theobject’s imageon the
glass.If thesameobjectis furtheraway, theanglewill besmaller, sotheimageon theglasswill alsobesmaller. This

1In fact,thepainterGiottowho livedfrom approximately1266to 1337wasthefirst to realizethattherelative sizesandshapesof thingsshould
bemodifiedin paintingsto make themappearmorerealistic.Of coursehedidn’t know exactlyhow to dothis,sosomeof hispaintingsappearabit
bizarre—thereis somecorrectionfor perspective, but it’s doneincorrectly.

2Technically, you’ll have to usejust oneeye,andkeepthateyefixedin space.
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is thebasicideabehindperspectivedrawing.

It is alsothebasicideabehindprojectivegeometry, which tellsushow thedrawingsof objectson theglassarerelated
to thepositionsof theobjectsin therealworld, to thepositionof theglass,andto thepositionof theeye. Thename
“projective” comesfrom the fact that thescenethat is beingdrawn is in reality being“projected”on the glass.You
probablythink of a projectorin theoppositeway, of course—aslideprojectorshineslight from thelampthroughthe
slide(glass)to a screen.But if you replacethelampwith youreye andimaginethelight raysreversedandcomingin
from theobjects,they wouldprojectanimageof thatobjecton theslide.

Thereis moreto projectivegeometry, of course.Justto hint atamoredifficult problem,imaginethatyouareapainter
of asceneasabove,but oneof thesubjectsin yoursceneis anotherpainterdoingaperspectivedrawing onhercanvas.
Whenyoudraw on yourcanvaswhatsheis drawing, how is yourpictureof herpicturerelatedto therealworld, since
it hasundergonetwo projections?And if this seemstoo far out, considerthis: thesuncastsshadows on theground,
which arejust projectionsof theobjectson the“canvas”of theground.If you’rea painterof a scenewith shadows in
it andyouwantto rendertheshadowscorrectly, you arereallypaintinga projectionof a projection.

Projective geometryis not just a subsetof Euclideangeometry. It mayseemsimilar sinceit seemsto dealprimarily
with theprojectionof EuclideanobjectsonEuclideanplanes.But thatis notall it does.Think aboutourexampleof the
pair of railroadtracksconvergingon thehorizon.In yourpaintingof thetracks,thetwo linesrepresentingthemmeet
at apoint on yourcanvas,but whatdoesthatpoint representin therealworld? Theansweris thatit representsapoint
“infinitely far away” in the directionthat the tracksaregoing (assuming,of course,that the world is really flat and
extendsforever).We cantell right away thatsomethingstrangeis goingon,sinceEuclideangeometryis notequipped
with any pointsthatare“infinitely far away”, but this exampleshows thatprojectivegeometryhasno problemsat all
representingsuchpoints(or at leasttheir projections).

Todayprojectivegeometryis heavily usedin averypracticalway—everytimeyoulook atathree-dimensionaldrawing
on your computerscreen,all the calculationsto producethat realistic imagewerecalculatedusingthe formulasof
projectivegeometry.

1.1 Example: The PinholeCamera

A pinholecameraprovidesanotherveryniceillustrationof perspective. A pinholecamerais justa light-tight boxwith
film attachedto oneinsidefaceandwith a pinholeon theoppositefacethatis covereduntil you wantto take a photo.
To takea photo,point thepinholein thecorrectdirection,uncover it until thefilm is properlyexposed,cover it again,
andthenremoveanddevelopthefilm in adarkroom.
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Figure2: An IdealizedPinholeCamera

Here,of course,we’ll consideranidealizedpinholecamerawherethepinholeis aninfinitely smallpoint in aboxwith
infinitely thin walls in a universewherelight travels in perfectlystraightlines. In the real world, the pinholehasto
have somearea,thecamerawalls somethickness,andwhenreal light passesthougha smallopening,it is diffracted,
or scatteredslightly, dependingon thesizeandshapeof thehole.

In Figure2, point
�

is thepinholein the front of thecamera,andfilm is attachedto thesideof thebox opposite
�

.
Imagineyou aretakinga photoof the line on theright with points � , � , . . . , � markedon it. Light scatteredfrom
eachpointgoesoff in everydirection,but only raysof light aimedexactlyat thepinholewill beableto reachthefilm.
Thusthe imageof thepoint � is ��� on thefilm, andsoon. Notice that this reversestop andbottom,so if you kept
trackof which endof thefilm wasup whenyou took thephoto,thingstowardthebottomof theworld would create
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imagestowardthetopof thefilm. Similarly, left andright areswappedon a two-dimensionalpieceof film.

PP

CC

AA

BB

DD

EE
A’A’
B’B’
C’C’

D’D’
E’E’

Figure3: PinholeCamerawith a Complex Scene

In the real world, of course,the objectsin the photodo not needto lie on a line parallelto the backof the camera.
They canbeanywhereatall in space,asshown in Figure3. Also noticethatwehavedrawn aone-dimensionalsliceof
thecamera,andthefilm is two-dimensional,andobjectsof interestcanlie anywherein thethree-dimensionalworld.

It is instructive to think aboutrestrictedversionsof thecamera.What if thecamerais takinga photoof a ruler with
evenly-markedpoints?How will thosepointsbespacedon thefilm? How doesthis changeif theruler is not parallel
to thecameraback?Whatif thecamerabackis not parallelto thefront of thecamerawherethepinholeis?

Finally, noticethatour earlierexampleof paintingon a pieceof glassis “just like” a pinholecamerawherethefilm
is in front of the pinhole (obviously a physically impossiblecamera,but it shows that the idea of a mathematical
projectionmakessenseno matterwherethe“film” is.

1.2 Aside: Invariance Under Transformation

This is a little off thesubjectso it won’t hurt to skip this section,but it is interesting.As you will learnasyou study
moreandmoremathematics,therearemany differentkindsof geometry. AlmosteveryonelearnsEuclideangeometry
first, but thereis projective geometrythat we’ll learnabouthere,aswell asvariousother forms of non-Euclidean
geometry:hyperbolicgeometry, elliptic geometry, affinegeometry, andsoon.

Oneniceway to think aboutall thedifferentgeometriesis to look at thesortsof transformationsthatareallowedand
to seewhatpropertiesof thegeometricfiguresarepreservedunderthosetransformations.For example,if you allow
objectsto berigidly movedontheplane,or possiblyflippedover, youhavetherelatedideaof congruencein Euclidean
geometry:two figuresarecongruentif onecanbe gottenfrom the otherby sliding it aroundon the plane,perhaps
rotatingit in theplane,or evenflipping it over.

Undertheseso-called“isometries”,thingslike lengthsandanglesarepreserved.

In projective geometry, the main operationwe’ll be interestedin is projection. What sortsof thingsarepreserved
betweena figure andits projection?The answeris that far lessis preservedby this operation,but therearecertain
featuresthatare. For example,lengthsandanglesaredistorted,but if threepointslie in a line beforetheprojection,
they will continueto dosoaftertheprojection.Similarly, if abunchof pointslie onany conicsection(circle,parabola,
ellipse,or hyperbola),their projectionwill alsolie on a conicsection,althoughnot necessarilythesamekind. Points
on a circle may be projectedto pointson a hyperbola,for example. In fact, you’ve probablyseenthis happenat
home—lightfrom abulb insidea circularlampshademakesahyperbolicshadow on a flat wall.

Whatotherpropertiesarepreservedundertheallowedtransformations?Thatis acentraltopic in projectivegeometry,
andin fact,of any typeof geometry.

2 A Tasteof ProjectiveGeometry

Let’sbegin by lookingat anancienttheoremof Pappus.

Theorem1 (The Theoremof Pappus) Let ���	�	
��	
 be a hexagon with six distinct vertices such that points � , � ,
and � lie on one line and points � , 
 , and 
 lie on another. Let � be the intersection of ��� with 
�� , let � be the
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Figure4: Theoremof Pappus

intersection of ��� with �	� , and let � be the intersection of ��� with ��� . Then � , � , and � lie in a straight line.
See the left-hand drawing in Figure 4.

A coupleof comments:

1. Obviously thehexagonwe’re talking abouthereis just a setof six pointsconnectedoneto theotherby lines.
Sincetheverticeshaveto lie alternatelyontwo lines,it’sclearthatourfigureisn’t goingto look muchlikemost
of thehexagonsyou’reusedto whichareusuallyconvex, andtheedgesaregoingto crosseachother. If youplay
with differentexamplesof suchhexagons,you’ll alsoseethatwearetalkingaboutthe(infinitely long) linesthat
connectthe six points,not just the segmentsthatconnectthe lines. Sometimesthe intersectionsmentionedin
thetheoremsoccuroutsidethesegments,but thetheoremstill holds.

2. Thecommentaboveis just a technicality;moreimportantis thatthe theorem is simply not true. At leastit’snot
truein Euclideangeometrywithout somecaveats.For example,thereis no reasonthat thepairsof linesabove
whoseintersectionsdeterminepoints � , � , and � intersectat all—they may be parallel. Seethe right-hand
drawing in Figure4 wherethe line ��� is parallel to the line �	� . In fact, it’s a goodexerciseto draw the
situationwhereall threesetsof thoselines areparallel,in pairs. But try to draw a situationwheretwo of the
pairsof linesareparallelandthethird pair intersects.(Don’t try too hard,though—it’s impossible.)

We canfix up the theoremso that it is true in Euclideangeometryby modifying the secondsentenceto be this: “If
noneof thepairsof lines ��� and ��� , ��� and �	� , or ��� and ��� areparallel,thenlet � be the intersection.. . ”
With this modification,theTheoremof Pappusbecomesa perfectlygoodtheoremin Euclideangeometry, but aswe
shall see,this modifiedversioncontainslessinformation. We canaddadditionalsentencesto the statementof the
theoremto recover this lost information,but thetheoremwill thenneedto bestatedasa collectionof cases.

If wearespeakingaboutprojectivegeometry, however, theTheoremof Pappusis always true,exactlyasstatedabove,
andtheresimply areno specialcasesto consider.

Let’s look at wherethe theorem(asstatedabove) goeswrong in standardEuclideangeometry. Supposeoneof the
pairsof lines (let’s say �	� and ��� to be definite—seethe right-handdrawing in Figure4) areparallel,andhence
point � doesnot exist. If you draw a figure like this, you will usuallyfind that the othertwo pairsof linesmeetat
pointsin the Euclideanplaneso you candraw the line � � , but you will alsofind that the line � � is parallelto �	�
and �	� . Soalthough��� and ��� do not meet,you might like to think of themas“meetingat infinity”, andnot any
infinity, but at aninfinity in a particulardirection.

Or if you don’t like this, think of thesituationwhere �	� and ��� arealmostparallel. They meeta long waysaway
from thehexagon,andasthey getcloserto beingparallel,thatpoint of intersectionmovesaway fasterandfaster. But
it continuesto lie on the line � � , so the line � � itself will getcloserandcloserto beingparallelto �	� and �	� as
theintersectionpointmoves.It’ssortof reasonable(althoughnotmathematicallyprecise)to think thatwhenthepoint
doesfinally “get to infinity”, thethreelineswill beparallel.
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Notethatthediscussionof a “point at infinity” is simply nonsensein Euclideangeometry, but it doesprovideauseful
wayof visualizingwhat’sgoingon.

As we statedabove, it is alsopossiblefor all threepairsof lines to beparallel,soall threeof the “points” � , � , and�
are“at infinity”. Whathappensif just two of thepairsof linesareparallel?Theansweris that this simply cannot

happen—ifany two pairsareparallel,thethird pair mustalsobeparallel.

Hereis a restatementof thetheoremsothatit is truein Euclideangeometry, andyet doesnot loseany information3:

Theorem2 (Euclidean Theoremof Pappus) Let �� �!�"�#	$ be distinct points forming a hexagon such that points� , ! , and # lie on one line, and points  , " , and $ lie on another. Let � be the intersection of �� with "�# (if it
exists), let � be the intersection of  	! with #	$ (if it exists), and let

�
be the intersection of !�" with $�� (again, if

it exists). It may be that some, but not all, of points � , � , and
�

exist. There are three possible cases:

1. If all three intersections exist, then they lie on a straight line.

2. If any two intersections do not exist, then the third one does not exist either.

3. If one of them (say � ) does not exist, then the line � � is parallel to �� and to "�# .

Many theoremsfrom projectivegeometryfollow thesamepattern—they areusuallyalsotruein Euclideangeometry,
exceptwhensomething“special” happens,suchaslinesbeingparallelsothatcertainpointsfail to exist. But in those
cases,somethingspecialalsohappensto theEuclideanfigure,andthetheoremstill seemsto betrueif we allow some
sloppy thinking about“points at infinity”.

As agoodexercise,look atthefollowing famoustheoremfrom projectivegeometrythatis usuallytruein theEuclidean
plane,but not always. Try to seewhenandwhy it fails, andthentry to rewrite the theoremso that it is true in all
Euclideancases,andsothatit tellswhathappenswhensomething“special” occurs:
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Figure5: Desargues’Theorem

Theorem3 (Desargues’Theorem) Let %&�� 	! and %&��'  	' !	' be two triangles in the plane. Suppose that the lines����' ,  � 	' , and !�!	' all meet at a point. Let � , � , and
�

be the intersections of �� and ��'  �' , of  �! and  �' !	' , and
of !	� and !	' ��' . Then � , � , and

�
all lie on the same line. See Figure 5.

As usual,it is averygoodideato draw a few diagramsof yourown andto play aroundwith them.

3 Two Key Axioms of ProjectiveGeometry

It is, of course,possibleto make a completelist of theaxiomsof projective geometry, in exactly thesameway asis
donefor Euclideangeometry. Sinceprojective geometryis usuallya full semesteruniversitycourse,thereis no way

3In fact, it doeslosea tiny bit of information,even asstatedbelow. In projective geometry, therecanbe “points at infinity” andthe theorem
continuesto hold in theprojective senseevenwhenoneor two of theverticesof thehexagonlie at infinity.
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to presentadetaileddescriptionof all theaxiomsandhow they all work togetherin asmallarticlelike thisone.Many
of the axiomsarethe samefor projective andEuclideangeometry. It is, however, very usefulto look at the axioms
thathighlight themajordifferencebetweenthetwo geometries.

Herearetwo very importantaxiomsfrom projective geometry. At first glance,they appearto be valid in Euclidean
geometryaswell:

1. Givenany two distinctpointsin a plane,thereis auniqueline thatlieson bothof them.

2. Givenany two distinctlinesin a plane,thereis auniquepoint thatlieson bothof them.

In Euclideangeometry, there’s obviously a problemwith the secondaxiom—whatif the two lines happento be
parallel?Thenthereis no point that lies on bothof them.Thecorrespondingaxiomfor Euclideangeometryincludes
anotherphrasein thesecondaxiomthatsayssomethinglike, “unlessthetwo linesareparallelin which casethereis
neverapoint thatlieson bothof them.”

3.1 Modelsof the Axioms

If you’ve never seenprojective geometrybefore,you’re probablythinking, “How canaxiom 2 above make sense?
Whataboutparallellines?Theauthorof thispaperis crazy.”

Theproblemis thatyou alreadyhave a firm ideain your mind of what thewords“point” and“line” mean,andthat
ideais almostcertainlyEuclidean.After all, it’sprobablytheonly way you’veever thoughtaboutthosewords.

But wordslike “point”, “line”, and“plane” in mathematicsare“undefinedterms”. Theonly thingswe canofficially
know aboutthemarethingswe canproveaboutthemfrom theaxiomsusinglogic. Obviously it’sagoodideato have
amentalmodelto helpusthink aboutthem,but in anofficial mathematicalproof,youcan’t useyourmentalmodelin
theargument—you’rerestrictedto usingtheaxiomsandpurelogic.

Perhapsit wouldbeeasierif otherwordshadbeensubstituted.Let’s look at thesameaxiomsagain:

1. Givenany two distinctpratzelsin a pongold,thereis a uniquelorperthatlieson bothof them.

2. Givenany two distinctlorpersin apongold,thereis auniquepratzelthatlieson bothof them.

There!Now it’snot sohardto believe, is it?

Actually, imaginethatyou’retalking to aMartianwho is extremelygoodatmathematics,but whoonly took freshman
Englishfor onesemesteratDiemosUniversity. She4 neverlearnedthetermsfor standardmathematicalobjects,soshe
just usestheMartiantermwhenshedoesn’t know theEnglish.

Here’sasystemshemightbetalkingabout.It consistsof apongold,asetof threepratzels( ( )+* , * - . ) andasetof three
lorpers( ( /0* 10* 23. ). We will usethesymbol 4 to mean“lies on”. Here’s thecompletedescriptionof thesystem:536 7 8 6 9 :�;=< ( )+* , * - * />* 1>* 23.5>? @ A B C 9 D0;=< ( )+* , * - .EF6 ? G+C ? D0;=< ( /0* 10* 23.HIC 9 @ A J 6 7+DI; )�4�/>* ,I4�/0* ,�4�1-�4�1>* -I4�2K* )�4�2/L4�)+* /M4�, * 1M4�,1M4�- * 2&4�- * 2&4�)
It’ s not too hardto checkto seethatbothaxiomshold (try drawing a—surprise—picture),althoughthesystemabove
doesn’t look very geometric.Thepoint is that thesystemabove is a modelfor theaxioms,so if thoseweretheonly
two axioms,thenwhatevercanbeprovedfrom themwill betrueof thesystemabove(aswell asof any othersystem
thathappensto satisfytheaxioms).

4Actually, “She” is just the closestapproximation—Martianscomein threesexes. But the reasonher English is pretty goodis that with the
longerMartianyear, thesemesterstherearecorrespondinglylonger.
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Is that theonly systemthatsatisfiesour Martianfriend’saxioms?No—thereare,in fact,aninfinite numberof them!
Hereis a systemthat is far moreinteresting(andfar moregeometric).We have learnedfrom previousconversations
with her that her job on marsis as a sort of large-scalesurveyor, and shedesignsroadsthat travel for very long
distanceson theplanet.Theplanetis basicallya sphere,andthesurfaceis very smooth,soall roadsgo in asdirecta
line aspossiblebetweenthepointsthey aremeantto connect.

On a sphere,theshortestdistance(on thesurface)betweentwo pointsis alonga “greatcircle route”. A greatcircle
is the intersectionof thesurfaceof thespherewith any planepassingthroughthecenterof thesphere.On earth,the
greatcirclesincludethe equatorandany of the linesof longitude(the north-southlines). Otherthanthe equator, it
doesnot includeany latitudelines,sincetheplanespassingthroughthosecirclesdonotpassthroughthecenterof the
earth.Of coursethesearejust veryspecialgreatcircles;any planethroughthecenterof theearth(atany weird angle)
makesa greatcircle asit cutsthesurface,sothereareaninfinite numberof greatcircles.

In fact,if you’veeverbeenonanairplanefor a longinternationalflight, you’veprobablynoticedthatthepaththeplane
takesdoesnot appearto bea straightline on themapthatyou find in theseatpocket in front of you. That’s because
your routeis probablycloseto a greatcircle route. For example,if you fly from SanFranciscoto Rome,you’ll find
that theplanegoeshigh over Greenland,which is a heckof a lot furthernorth thaneitherSanFranciscoor Rome.If
you drew the pathon a globe,you’d find that a plane(a Euclideanplane,not an airplane)cutting throughthat path
wouldgo (approximately)throughthecenterof theearth,sinceit is approximatelya greatcircle.

Anyway, what our Martian friend meansis this: a pongoldis just the (spherical)surfaceof Mars. A lorper is just
any greatcircle on the surfaceof the planet. A pratzelis wheretwo lorpersmeet. But try to visualizewheretwo
greatcirclesmeet—they meetat two Euclideanpointsexactly oppositeeachotheron the planet. In otherwords,a
line connectingthetwo pointswould passthroughthecenterof theplanet.Soa pratzelis anobjectthatcontainsany
two diametricallyopposedpointson thesurfaceof Mars. It maynot beobvious(but it is true—seebelow) thatgiven
any two differentsuchpratzels(pairsof points),thereis exactlyonelorper(greatcircle)passingthroughbothof them
(throughall four pointsof thetwo pratzels).

This is a perfectlygoodmodelof thetwo axioms.If you think aboutit, any two differentgreatcirclesmust intersect.
If thegreatcirclesaredifferent,they mustcorrespondto two differentplanespassingthoughthecenterof theplanet,
andwe know that two planesintersectin a Euclideanline. Both planesgo throughthe centerof the planet,so the
centerof theplanetmustbeon the line of intersectionof the two planes.Therefore,sincethe line of intersectionof
thetwo planesgoesthroughthecenterof thesphere,it musthit thesurfacein two diametrically-opposedpoints(or, in
theMartian’swords,in a pratzel).

Justto completetheargument,let’s show thatany two pratzelsdeterminea greatcircle (a lorper). If we draw a line
connectingeachpair, sincethepointsarediametricallyopposite,thelinesmustpassthroughthecenterof theplanet.
Sothetwo linesintersectat thecenter. But any two distinctintersectinglinesdeterminea plane,andwherethatplane
cutsthesurfaceof thesphereis therequiredlorper(greatcircle).

Sosheis makingsenseafterall—andin a verygeometricsortof sense,too.

4 A Model for ProjectiveGeometry

Let’s seeif we cancomeup with a usefulmodelof projective geometrythatsatisfiesthe two axiomsabove, andyet
allowsusto usesomeof our intuition aboutEuclideangeometry.

Here’swhatworksfor me(but yourmileagemayvary):

N Startwith thestandardEuclideanplanewith its normalpointsandlines.EverypointontheEuclideanplanewill
beapoint in our projectivegeometry(but we will addsomeadditionalpointslater).N EveryEuclideanline on theplaneis parallelto aninfinite collectionof otherlines.All theseparallellinesgo in
thesamedirection(or if youprefer, all theselineshavethesameslope).For everydirection(or for everyslope),
adda “point at infinity” thatcorrespondsto this direction. Add this onepoint to every oneof the lineshaving
thatslopeto makenew linesin ourprojectivegeometry.N For every direction, thereis only one“point at infinity”. It doesnot matterthat the line seemsto go in two
directions;imaginethatthelines“wrap around”,meetingat thepointat infinity.
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O Finally, take all thepointsat infinity, andcreateonenew line thatconsistsof all (any only) thosepoints.We’ll
call this the“line at infinity”.

That’s it.

Now, we needto checkthatour two axiomshold.

First of all, do every two pointsdeterminea line? Well, if the two pointshappento beoriginally standardEuclidean
points,thenthestandardEuclideanline (plustheoneadditionalpointat infinity) servesperfectlywell asa line passing
throughbothof them.It’salsoclearthatthis is theonly line thatwill work.

If oneof thetwo pointshappensto beapointat infinity, thenchooseastheline theonepassingthroughtheEuclidean
point,andgoingin thedirectionof thatparticularpoint at infinity.

Finally, if bothof thepointsarepointsat infinity, thenwe know that theline at infinity passesthroughbothof them.
No otherline will work, sinceall the othersareextendedEuclideanlines, which canonly have oneslope,andtwo
differentpointsat infinity would representtwo differentslopesor directions.

Second,doany two linesdetermineapoint?If thetwo linesarebothstandardEuclideanlines(with anadditionalpoint
each),they areeitherparallelor not (in the Euclideansense).If they arenot parallel, they intersectin the standard
Euclideanpoint (which is a point in our modelof projective geometry).They do not sharethepoint at infinity since
if they intersect,they have differentslopes,so the two projective lines meetat oneandonly onepoint. If they are
parallel(in theEuclideansense),thenthey bothhave in commonthepointat infinity thatwe addedfor thatparticular
direction.

Finally, if oneof thetwo lineshappensto betheline atinfinity whichcontainsall thepointsatinfinity, thenin particular
it will containthepoint at infinity thatwe addedfor any otherEuclideanline. Sinceevery augmentedEuclideanline
is augmentedwith only a singlepoint at infinity, theintersectionof theline at infinity with any otherline is restricted
to this singlepoint at infinity.

Soour modelsatisfiesthetwo projectiveaxioms,andplaneprojectivegeometryis a valid systemto consider.

It’s a goodideanow to go backto theTheoremof PappusandDesargues’Theoremto seethatunderthis model,the
simplestatementsof boththeoremsareexactly theoremsin projectivegeometry. Do this now.

5 Duality

Let’s returnto ourMartianfriend’spairof axioms.We’vedecidedthata lorpermeans“line” (or at leastournew funny
kind of line), andpratzelmeans“point” (in thesamefunny sense).

Or doesit? Maybelorpermeans“point” andpratzelmeans“line”. If you look carefullyat the axioms,andreplace
every instanceof “lorper” with “pratzel” andvice-versa,both axiomsreadexactly the same,althoughthe first and
secondaxiomsarereversed!

Sohow canwe tell which is which? The answeris, we cannot! Thereis absolutelynothingin projective geometry
thatmakesa point behave differentlyfrom a line (from thepoint of view of theaxioms).If you begin with any valid
theoremaboutpointsandlines,andyougothroughandcrossoutevery instanceof “point” andwrite “line” anddo the
reverseprocess,replacing“line” with “point”, you’ll obtainanothervalid theorem.

Soprojectivegeometryis muchcoolerthanEuclideangeometry, sinceeverytimeyoumanageto proveatheorem,you
have in factproventwo of them.This is called“duality”.

We will look at onepair of dual theorems,but keepin mind that thereis nothing specialaboutthesetwo—every
theoremin projective geometryhasa dual theoremthat’s obtainedfrom the first one by swappingthe words for
“point” and“line”.

5.1 Pascal’sTheorem

The following theoremis to be interpretedin the projective sense—parallellines meetat the appropriatepoint at
infinity, et cetera.(In fact,thecarefulstudentwill ask,“What in theheckis a circle in projectivegeometry?A circle
certainlyisn’t preservedunderprojection—acircle canlook like anellipse,parabola,or hyperbola.” Well, thefact is
thatPascal’s theoremin factappliesaslongasall six verticesof thehexagonlie onany conicsection,not justacircle.)
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Also notethatthis (andit’sdual)is aprojectivetheorem.It canbewritten in aEuclideanform, but caremustbetaken
to describewhathappensin thecaseof parallellines,et cetera.
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Figure6: Pascal’sTheorem

Theorem4 (Pascal’sTheorem) Let P�Q	R	S�T	U be any hexagon such that the distinct vertices P , Q , R , S , T , andU lie on a circle. Let P�Q and S�T intersect at point V , let Q	R and T	U intersect at W , and let R�S and U	P intersect
at X . Then V , W , and X all lie on the same line. See Figure 6.

We won’t provethis theorem,but it seemsto betruefrom thefigure,andif youdraw otherexamples,you’ll seethatit
seemsto hold in thosecasesaswell.

5.2 Brianchon’s Theorem

Sowhatdoesthedualof Pascal’sTheoremlook like?Thedualis called“Brianchon’sTheorem”,andhere’s thedirect
“translation”. To make it slightly easierto read,we uselower-caselettersfor lines,andif Y and Z aretwo lines,we’ll
useY Z to indicatethepoint thatliesat theintersectionof thetwo.

cc
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aabb
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fafa

Figure7: Brianchon’sTheorem

Theorem5 (Brianchon’sTheorem) Let Y Z [ \ ] ^ be any hexagon such that the distinct lines Y , Z , [ , \ , ] , and ^ are
tangent to a circle. Let _ be the line connecting points Y Z and \ ] , let Z [ and ] ^ lie on the line ` , and let [ \ and ^FY lie
on the line a . Then _ , ` , and a all meet at a point. See Figure 7.

Checkthat Brianchon’s theoremis in fact the dual of Pascal’s Theorem,and it’s also a good idea to draw a few
examplesto convince yourself that it’s true. Finally, checkto seethat it’s true in the pureprojective sense—when
someof thelinesintersectatpointsat infinity.
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If b and c aretwo theorems,andif b is thedualof c , then c is thedualof b . This is probablyobviousto you, but
we’ll stateit herejust to makesureyou’reawareof it.

Rememberthat there is nothing specialabout the fact that Pascal’s (or Brianchon’s) Theoremhasa dual—every
theoremin projectivegeometryhasadual.Try to find thedualsof theTheoremof Pappusandof Desargues’Theorem.
Draw somepicturesto convinceyourselfthatyou’vestatedthedualtheoremscorrectly.

6 HomogeneousCoordinates

The modelof projective geometryin the previous sectionmay be nice for visualization,but it is not too useful for
makingcalculations,which is requiredif the goal is to find an exact mappingbetweenthe coordinatesof objects
beforeandaftera projection.

Obviouslywecannotjustusethestandardpairsof cartesiancoordinatesthatweusein theEuclideanplanesinceevery
possiblepair of realnumbersexactlycover theplane,but therearenoextra pairsleft over to identify thenewly added
pointsat infinity. We can,however, make someprogressby looking at thosecartesiancoordinatesaspointsmove
“towardinfinity” alongstraightlinesin agivendirection.

(2,1)(2,1)
(4,2)(4,2)

(10,5)d(10,5)d
(20,10)(20,10)

Figure8: CartesianCoordinates

As anexample,considerthefollowing points: e f g h i , e j+g f i , e k g l i , e f m g h m i , e f m m g h m m i , andsoon,wherethesecond
coordinateis alwaysdoublethefirst. If we plot thesepointson thestandardplane(seeFigure8), asthecoordinates
getlargerandlarger, thepointsmovetowardinfinity alongtheline f n�oqp . We’d like to haveapointapointat infinity
somethinglike e f rqg rLi , but evenif therewerean r in therealnumbers,we’d needa f r aswell (andlots of other
sizesof infinity to correspondto everyotherpossibledirection).

Here’sanotherapproach:All thepointsalongtheline abovecanbewritten e fIs t0g h0s t3i , wheret is arealnumber. Ast getslarger, thepointsmove off toward infinity. At first, this doesn’t seemto make muchprogresssincewe won’t
getto thepointwe wantuntil t getsto infinity, which it neverwill, quite.

But wecandosomethingsimilar—considerpointsof theform e f u v g h u v i , andthistime,let v movetowardzero.Again,
we can’t let v getto zerosincedivision by zerois undefined,but at least v is headedtowardzero—arealnumberthat
existsratherthan r —anumberthatdoesnot.

6.1 Definition of HomogeneousCoordinates

Hereis an ideathatdoes work: usethreecoordinates.Every point on theprojective planeis representedby a setof
threenumberswhereat leastoneof thethreenumbersis non-zero.As long as v is not zero,we will think of thepointe w+g x g v i asrepresentingthestandardEuclideanpointwith coordinatese w u v g x u v i .
Thefirst problemweencounteris thatthesamepointcanhavemorethanonesetof coordinatesassociatedwith it. For
example,thethreepoints e f g h g h i , e j+g f g f i , and e f m m g h m m g h m m i all correspondto thesameEuclideanpoint e f g h i . Is
this goingto causeseriousproblems?
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It shouldn’t—afterall, we do exactly the samething all the time with rationalnumbers.Nobodyseesany problem
with the fact that y z {M|}{ z ~L|�y � � z { � � , even thougheachof themhasdifferent“coordinates”. (We usuallycall
the“coordinates”of rationalnumbersthenumeratoranddenominator.) It is just a conventionthatwe useto the “ z ”
symbol to representrationalnumbers.We could have written fractionsasfollows: y z {M|�� y � { � , { z ~L|�� { � ~ � , et
cetera.

In otherwords,if � z � is any normalfractionand � is any non-zerorealnumber, � z � and � � � � z � � � � representexactly
thesamenumber. In thesameway, if � �K� �F� ��� arethehomogeneouscoordinates5 for any point in theprojectiveplane,
and � is any non-zeroreal number, then � �3�3� �F�F� �F��� representsexactly the samepoint. In the sameway that we
normallyreduceour rationalnumbersto lowestterms,we generallychoosea simplerepresentative for homogeneous
coordinateswhenwe can.If � is not equalto zero,we canmultiply every coordinateby y z � to obtaintheequivalent
point � �Fz ��� �+z ��� y � . Similarly, if you havea Euclideanpoint with coordinates� �3� � � , you canfind thecorresponding
homogeneouscoordinatesfor that point by addinga y as the final coordinate: � �3� � � (Euclidean)correspondsto� �3� �F� y � (homogeneous).

Now let’s look againat what we weretrying to do above. We noticedthat the point � �3z �	� �+z ��� movedout toward
infinity alonga line as � movedtowardzero.But theEuclideanpoint � �3z �	� �+z ��� correspondsto theprojectivepoint� �Fz ��� �+z ��� y � which representsexactly thesamepoint as � �3� �F� ��� . In projective homogeneouscoordinates,we can
let � go all theway to zero,andweobtaina “point at infinity” with homogeneouscoordinates� �3� �F� � � .
In fact,any point with zeroasthethird coordinatewill correspondto a point at infinity, andall thosepointstogether
will lie on the “line at infinity”. The two pairsof homogeneouscoordinates� �F� � � � � � � and � �+� � � � � � � on the line at
infinity representthesamepoint only if thereexistsa non-zeronumber� suchthat �F��|��F�F� and � �I|��F� � .
Rememberthatat leastoneof thehomogeneouscoordinatesmust benon-zero: � � � � � � � is not a valid setof homoge-
neouscoordinatesandit doesnot representa point in ourprojectiveplane.

6.2 Calculationswith HomogeneousCoordinates

OK, soweknow how to relateournew homogeneouscoordinateswith pointson theold Euclideanplaneandwith the
new pointsat infinity. Sowhatis theequationof a line? How canwe tell if a point is on a line? How canwe find the
intersectionof two lines?How canwe tell if threepointslie on thesameline?

In highschoolalgebrayouprobablylearnedthattheequationof a line is givenby theformula:

��|q�&���L� � (1)

where� and � arereal numbers.� is theslope,and � is the � -axis intercept.A point � �3� � � lies on that line if and
only if equation1 holds.

Theonly seriousdrawbackof equation1 is thatthereareaninfinite numberof linesthatit is unableto represent!Any
line thatis parallelto the � -axishasnorepresentationbecausetheslopeis “undefined”.(And of coursenow thatwe’re
learningaboutprojectivegeometry, wheneverwe seetheword “undefined”,we arethinking to ourselves,“infinite”.)

Hereis analternateequationof a (Euclidean)line thatworksa lot better:� ���L�	�	�L��|q� � (2)

where
�

, � , and � arerealnumbers,andeither
�

or � is non-zero.

This form of theequationfor the line hasa hugeadvantagein that it alsoallows vertical lines. If �}|�� and
���|��

thentheequationbecomes�L|��I�	z � , andthis is theequationof the line parallelto the � -axishaving � -coordinate�I�	z � everywhere.

It’snotquiteright for ourhomogeneouscoordinates,however, sincein generalaprojectivepointhasthreecoordinates:� �3� �F� ��� . A tiny modificationfixeseverything. Hereis the equationfor a completelygeneralline in the projective
plane: � ���������L����|�� � (3)

5Notice thatwe tendto use � for theextra coordinateratherthan � . This is becausewe don’t want to getconfusedby the fact that � �   ¡   � ¢
usuallyrepresentsa point in normalthree-dimensionalEuclideanspace.Whenwe look at three-dimensionalprojective space(which will require
four coordinates),wewill write generalpointsin thatspaceas: � �   ¡   �   �K¢ .
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where£ , ¤ , and ¥ arerealnumbers,andnot all threeof themarezero.

First of all, equation3 worksfine for thestandardEuclideanpoints. TheEuclidean¦ §3¨ © ª is normally representedin
homogeneouscoordinatesas ¦ §K¨ ©F¨ « ª , andsincethe ¬ coordinateis 1, equation3 reducesto £I§�­®¤�©I­®¥�¯�° which
is just whatwe hadin theEuclideanplane.If we happento usea non-standardrepresentationfor a point (saywe use¦ ±F§K¨ ±3©F¨ ±Kª , where ±�²¯�° for theEuclideanpoint ¦ §K¨ © ª , it works just fine: ±K£I§�­�±3¤	©�­q±K¥}¯�° is thesameas£I§�­L¤	©	­L¥�¯q° since(beingnon-zero),we candivide throughby ± .

But equation3 alsoworksperfectlyfor pointsat infinity andcanrepresenttheline at infinity aswell.

First let’s checkthat thepointsat infinity work. If £I§�­q¤�©�­q¥³¯�° is theequationfor a standardEuclideanline,
thenthepoint at infinity thatwe have to addto it to make a projective line is this: ¦ ´�¤�¨ £	¨ ° ª (checkthat this is the
case).If we plug §M¯³´I¤ , ©®¯�£ , and ¬�¯�° into equation3, we obtain: £�µ ¦ ´�¤	ªK­q¤�µ £q­�¥�µ °�¯�° which is
satisfied,so ¦ ´I¤�¨ £	¨ ° ª lieson theprojective line, asit should.

Second,what is theequationfor theline at infinity? Theansweris: °	µ §�­�°	µ ©�­�«Iµ ¬�¯�° . Every point at infinity
will have its ¬ coordinateequalto zero,soit will look somethinglike this: ¦ ¶+¨ · ¨ ° ª . Substitutethis into theequation
for ourproposedline at infinity, andweobtain: °�µ ¶�­�°�µ ·>­�«Iµ °	¯�° . Again, it is satisfied.

To becompletelysureoursystemmakessense,weshouldalsocheckthatthepointat infinity for a line doesnotsatisfy
the equationfor any otherline with a differentslope,andthatpointsnot at infinity do not lie on the line at infinity.
Theseareveryeasyto do,but makesureyou know how to do them.

6.3 Duality, Again

Soaprojective line is specifiedby exactly threerealnumbers,at leastoneof which is non-zero.We canthuswrite the
equationof a line as: ¸ £	¨ ¤�¨ ¥�¹ . If a generalprojectivepoint hascoordinates¦ §3¨ ©F¨ ¬�ª , whereat leastoneof thethree
numbersis non-zero,thenwe know thattheconditionthatmustbesatisfiedfor point ¦ §K¨ ©F¨ ¬�ª to lie on line ¸ £	¨ ¤�¨ ¥�¹
is that £I§�­L¤�©	­M¥�¬�¯�° . For now we’reusingthesquarebracketsandupper-caselettersto indicatecoordinatesof
a line, andregularparenthesesandlower-caselettersto representpoints.

Now, supposeI hadgottenmixedup in thepreviousparagraph,andreversedthewords“point” and“line”. Would the
paragraphstill betrue?Readit againandseethatit is absolutelyunchangedin meaningif you reversethetwo words.
If you arenot told which objectsarepointsandwhich arelines, thereis no way you canfigure out which is which
from theaxioms.This is anotherway to seethatdualityworks.

Actually, theonly problemwith exchangingthewords“point” and“line” is theappearanceof thesquarebracketsand
parentheses.To do the exchange,you have to think of pointsasbeingwritten with squarebracketsandlines with
parentheses.Becauseof theduality, it seemspointlessto write pointswith parenthesesandlineswith squarebrackets.
If we justwrite everythingwith parentheses,theduality is evenmoreobvious.

And by theway, wecouldhavejustpulledthedefinitionin thefirst paragraphin thissubsectionoutof theair andsaid,
“Here is amodelfor projectivegeometry.” Youcancheckit againstall theaxiomsof projectivegeometryandseethat
thesetriplesof numbersinterpretedaspointsandlinessatisfyall theaxioms.

6.4 A few more relationships

If you know anything aboutthree-dimensionalvectors,it is quite interestingto learnthat variousvectorandmatrix
operationson thehomogeneouscoordinatesof a projectivepointhavevery interestinggeometricinterpretations.

If you don’t know anything aboutthree-dimensionalvectors,herearethe definitionsof two of the moreinteresting
operations,describedonly in termsof arithmeticoperationson the coordinates. If ºF»q¯¼¦ §F» ¨ © » ¨ ½ » ª and º+¾q¯¦ §+¾ ¨ © ¾ ¨ ½ ¾ ª , thenthedot-productof ºF» and º+¾ is definedto be:

ºF»>¿0º+¾�¯q§3» §F¾0­L© » © ¾0­L½ » ½ ¾ ¨
andthecross-productis definedasfollows:

ºF»�À&º+¾�¯�¦ © » ½ ¾I´M½ » © ¾ ¨ ½ » §+¾I´L½ ¾ §F» ¨ §F» © ¾I´M§+¾ © » ª Á
Notethatthedot-producttakestwo three-dimensionalvectorsandreturnsa realnumber(usuallycalleda “scalar”,as
opposedto a “vector”quantity).Thecross-productalwaysreturnsavectorquantity.
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Now, to applythesedefinitionsto projectivegeometry, let ÂKÃ�Ä�Å Æ3Ã Ç È Ã Ç É�Ã Ê and ÂKË�Ä�Å Æ+Ë Ç È Ë Ç É�Ë Ê betwo projective
pointsandlet Ì0ÃIÄ�Å Í�Ã Ç Î	Ã Ç Ï�Ã Ê and Ì0ËIÄ�Å Í�Ë Ç Î�Ë Ç ÏIË Ê betwo projective lines.

We havealreadyseenthatif point ÂKÃ lieson ÌIÃ thatis equivalentto ÂKÃ>Ð0ÌIÃIÄ�Ñ .
Here’saninterestingexercise:Show thattheequationof theline thatpassesthoughÂ>Ã and Â3Ë is givenby ÂKÃIÒ�Â3Ë . It
isn’t difficult—just list out thecoordinatesandmake certainthat Â>Ã and ÂKË lie on theresultingline (andtheprevious
paragraphshowsyouhow to checkthat).

Here’sanotherinterestingexercise:Show thatthecoordinatesof thepoint thatlieson theintersectionof two lines Ì0Ã
and Ì>Ë is givenby ÌIÃ�Ò®Ì0Ë . Don’t work too hard—youalreadyprovedit if you solvedtheproblemin theprevious
paragraph.Rememberduality?

6.5 Matrix Transformations

Finally, andthis is abit beyondwhatis coveredin therestof thispaper, here’sacleanwayto list all possibleprojective
transformations.It requiresthatyou know how to multiply a vectorby a matrix. If you don’t, hereis theformulafor
multiplying a three-dimensionalvectorby a Ó�Ò®Ó matrix:

Å ÆKÇ ÈFÇ É�Ê
ÔÕ ÍÖÎÖÏ×ÙØÖÚÛÝÜßÞ

àá
Ä�Å ÆFÍ�âLÈ × âLÉ Û Ç ÆFÎ�âLÈ Ø âMÉ Ü Ç Æ+Ï�âMÈ Ú âMÉ Þ Ê ã (4)

If the Ó�Ò&Ó matrix above is non-singular(if it hasaninverse,or equivalently, if its determinantis non-zero),thenthe
operationaboverepresentsa valid projectivetransformation.

What is truly amazingis thatsucha hugecollectionof “standard”transformationsarejust specialcasesof projective
transformations,includingrotation,translation,scaling,shearing,andperspectiveprojections.If youhaveamatrixthat
representsa translationandanotherthatrepresentsa rotation,theproductof thetwo matricesrepresentstheoperation
of rotationfollowedby translation.Thedetailsarebeyondthescopeof thispaper;seeany bookoncomputergraphics
for verypracticaldetails.

7 One DimensionalProjectiveGeometry

In this paper, we’ve only lookedat theprojectiveplane.Onecanconsiderprojectivespacesin any numberof dimen-
sions,andthe equationswill all besimilar. Three-dimensionalcomputergraphicsusesthree-dimensionalprojective
space(with 4 homogeneouscoordinates),andhigherdimensionalspacesarealsoreasonableto consider. Thingsdo
get complicatedin threeandmoredimensions,andto learnaboutthem, it is probablya goodideato look both in
mathematicsbooksandin bookson computergraphics,sincethecomputergraphicsbookstake a very practicalview
of thesubject.

But it is alsointeresting(andveryeasyto do)to analyzeaone-dimensionalprojectivespace(with only 2 homogeneous
coordinates).That’swhatwe’ll do in this section.

The nicestthing aboutone-dimensionalprojective geometryis that you candraw pictureson a pieceof paperthat
completelydescribethe projections. For example,figure 9 illustratesa projectionof a one-dimensionalline onto
another.

In this particularexample,theline with evenly-spacednumberson it on theleft is projectedon thenumberedline on
the right. The centerof projectionis the point ä . You canseethat the point å is projectedto the point Ñ , that æ is
projectedon æ , that Ó is projectedto ç , andsoon. Of coursemostof theotherintegerpointsareprojectedto points
without integercoordinates.

If you think aboutit, this is exactly theone-dimensionalanalogof two-dimensionalprojections—of(2-dimensional)
planesontoplanesin three-space.In this case,(1-dimensional)linesareprojectedontolinesin two-space.

If youaregiventheequationsof thetwo linesandthecoordinatesof thepointof projection,it’sclearthattheprojection
is completelydetermined,andoneof thethingswe’ll look at in thissectionis theclassof projectionsthatarepossible
givenarbitrarylocationsof thelinesandof thepoint of projection.In fact,we’ll evenallow thepoint of projectionto
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Figure9: OneDimensionalProjection

bea pointat infinity, asweshould6.

Justaswe did in the two-dimensionalcase,we’ll have to extendthe Euclideanline to a projective line, but in this
case,we only haveonedirectionto go,soweonly needto adda single“point at infinity” to turn aEuclideanline into
a projective line. Looking backat figure 9, you canseethat the line from è throughthe point é on the left line is
approximatelyparallel(well, actuallyexactly parallel)to theright line, andsowill neverhit it. In fact,this projection
mapsé to the“point at infinity”.

Usingsometechniquesthatwe’ll derive later, hereis theformulafor theprojectionabove:

ê�ë ì+í0î�ï ð ì�ñ ï ðé ñMìóò (5)

It’seasyto testthat
ê�ë ï í>î ð , ê�ë ô í0îqô , andthat

ê�ë õ í>î�ö
. Youcanalsoseethatif you try to evaluate

ê�ë é í youget
a denominatorof zerowhich doesn’t exist in the realnumbers.But if you examinewhathappensto

ê�ë ì+í
as
ì

gets
closeto é , youcanseethat

ê�ë ì+í
getsvery large,soit seemsto “get closeto infinity”.

If you look backat equation4 andseewhat it amountsto for standardEuclideanpointswith coordinates
ë ìK÷ ø í

(and
thereforehomogeneouscoordinates

ë ì3÷ øF÷ ï í , we obtain:

ì+ùúîÖû ì�ü�ý�ø�üLþÿ ì�ü���ø	ü��
ø ù î�� ì�ü���ø	ü��ÿ ì�ü���ø	ü��

If we tossout the
ø

coordinatefrom theequationsabove,we obtainsomethingvery similar to equation5. In fact,the
mostgeneralpossibleprojective transformationof a line into a line is givenby theformula:

ê�ë ìFí0î}û ì�ü �ÿ ì�ü�ý ÷
aslongas û ý�ñ � ÿ	�î ð . Thisfinal conditionthat û ýqñ � ÿ	�î ð is necessary;otherwisenumeratoranddenominator
arejust multiplesof eachotherandtheprojectionwill takeeverypoint on theline to a constantpoint.

6If we don’t allow projectionsfrom thepoint at infinity, we can’t even have an identity projection. With thepoint at infinity, it’s easy—make
thelinesto beprojectedto eachotherbothparallelto the 
 -axisandthepoint at infinity to bein thedirectionof the � -axis.Thenall theprojection
lineswill beparallelto the � -axis,andwe’ll obtainthedesiredresult.
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