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Abstract

This article will describe the geometric tool of inversion in a circle, and will
demonstrate how it can be used. Proofs of the properties of inversion will usually
not be included.

1 Introduction

In this document, some of the mathematics is not absolutely rigorous, but can be made
so. The main purpose of the document is to provide an intuition about inversion and to
illustrate how the method can be used in many situations to convert difficult problems
into simpler ones.

Inversion in a circle is a method to convert geometric figuresinto other geometric
figures. It is similar to reflection across a line:

• Any figure can be reflected across a line or inverted in a circle.

• Reflecting a figure across the same line twice returns it to itsoriginal form. The
same is true for inversion in a circle.

• Reflection takes points to the other side of the line; inversion takes points to the
“other side” of the circle. In other words points inside are inverted to the outside
and vice-versa.

• There is a fairly easy mathematical relationship between a figure and its reflec-
tion or between a figure and its inversion.

• Sometimes it is much easier to work with the reflected versionor the inverted
version of a figure.

There is a simple way to describe how a point can be inverted ina circle. If we wish
to invert a more complex figure than a single point, we simply invert every point in the
figure and the resulting set of points becomes the inverted figure.

In this document, we will describe some ways to think about inversion that may not be
mathematically perfect, but they provide some good intuition about inversion that will
usually lead you to correct conclusions.
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It turns out that (loosely speaking), “circles” invert to “circles”, but for now we need to
include the quotation marks, since by “circles” we need to include “special” circles that
have an infinite radius. In other words, we will consider straight lines to be a special
type of “circle”.

2 Basic Definition of Inversion

In the same way that reflection across a line depends on the particular line you choose,
inversion in a circle depends on the particular circle. The basic definition of inversion
of a point in a circle is simple:

If k is a circle with centerO and radiusr, andP is any point other thanO, then the
pointP ′ is the inversion ofP if:

• P ′ lies on the ray
−−→
OP .

• |OP | · |OP ′| = r2.

OO PP
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Figure 1: Inversion of a point

Figure 1 shows the inversion of a typical point and how such a point could be con-
structed with straightedge and compass. IfP is outside the circlek, construct a tangent
line fromP to k touchingk atR. Drop the perpendicular fromR to the ray

−−→
OP andP ′,

the inversion ofP , is at the point of intersection of that perpendicular and the ray. If

P ′ is inside the circle do the opposite: construct the perpendicular to
−−→
OP ′ atP ′ which

intersects the circlek atR. The tangent tok atR intersects the ray
−−→
OP ′ atP .

This figure and the description in the previous paragraph shows that inverting a point
twice with respect to the same circle returns the point to itsoriginal position.

To show the relationship of the lengths, since△OP ′R ∼ △ORP , we have:

|OP ′|/|OR| = |OR|/|OP |,

and since|OR| = r, this is equivalent to:

|OP | · |OP ′| = r2.
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Notice that ifP happens to lie on the circlek, then the inversion ofP is the same asP .

3 The “Point at Infinity”

Notice that the using the definition in Section 2 we can invertany point on the plane
other than the pointO itself.

It is easy to see why there is a problem when we try to invert thepoint O. If we
consider pointsP that are very close toO, the length|OP | will be tiny, and to satisfy
the equation|OP | · |OP ′| = r2 will require that the length|OP ′| will have to be
huge. You can also visualize what happens with the geometricconstruction displayed
in Figure 1: as the pointP ′ moves towardO the pointR moves such that the lineRP is

closer and closer to parallel with the ray
−−→
OP ′. When they are parallel, the intersection

does not exist. It’s as if the pointP ′ moves infinitely far away along the line.

It’s a pain that there is a point that cannot be inverted, and one way out of the problem
mathematically is to decide that we are no longer considering a standard Euclidean
plane, but rather an extended plane that includes a single “point at infinity” which is
the inversion of the center of the circle. In order that repeating the inversion twice
brings every point back to its original position, we simply say that the inversion of the
point at infinity though any circle is the center of that circle.

The plane extended in this way has only one point at infinity, and it’s nice to think of
it as a place you approach if you move farther and farther away. For that reason, it is
useful to think of that point as being on every straight line in the plane, since every line
eventually gets arbitrarily far from any particular point on the plane.

If we think about these new “lines” that are the same as the oldlines but with an
additional point at infinity, then we can approach that additional point by traveling
along that original line in either direction. If we could getto that point and go past
it, it would appear that the line looped around “through infinity” and came back from
infinity from the other direction. Or in other words, these new lines behave like loops,
or circles.

So from this point on in this document, when we use the word “circle” with quotation
marks around it, we will always mean either a normal circle inthe plane or one of these
lines that has been augmented with the point at infinity so that it behaves somewhat like
a circle. If there are no quotation marks, we will just mean a normal Euclidean circle.
We will always put the quotation marks around “lines” since we will always want to
include that point at infinity.

4 Inversion of “circles”

With this enhanced idea of a “circle”, a key property of inversion is the following: If
every point on a “circle” is inverted through a circlek, the result will be a “circle”.

The statement above is not hard to prove, but it takes time andthere are lots of cases to
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consider, so we will take it on faith, but we will list here some key results of inversion
with respect to a circlek with centerO, each of which requires a proof that’s not
included here:

• Circles completely inside ofk that do not pass throughO are inverted to cir-
cles completely outside ofk and vice-versa. Circles that intersectk not passing
throughO will invert to circles that also intersectk at the same point(s).

• Circles that pass throughO are inverted to “lines”. If that circle also passes
throughk at two pointsP andQ, its inversion will be the “line” passing through
P andQ. If a circle passes throughO and is internally tangent tok, its inverse
will be the “line” externally tangent tok.

• A “line” that passes throughO is inverted to itself. Note, of course that the
individual points of the “line” are inverted to other pointson the “line” except
for the two points where it passes throughk.

• Every “line” that does not pass throughO is inverted to a circle (no quotes: a
real circle) that passes throughO.

• Two “Circles” that intersect in zero, one, or two places are inverted to other
“circles” that intersect in the same number of places. A little care must be taken
to interpret this statement correctly if the intersection or tangency is atO. For
example, if two circles are tangent atO, then their inverses will be two parallel
“lines” (that “meet at infinity”). If a line and a circle are tangent atO, then the
inverse of the circle will be parallel to the line (which is inverted into itself).

• A “circle” intersecting or tangent tok is inverted to a “circle” intersecting or
tangent tok in exactly the same places or place.

• We can define the angle between two “circles” by finding the angle between the
lines tangent to the “circles” at the point of intersection.Of course if the “circle”
is a line, just consider the tangent line to be the line itself. Tangent circles make
an angle of0 as to parallel “lines” that “meet at infinity”. Using this definiton,
one final property of inversion is this: if two “circles” meetat an angleα, then
their inversions also meet at the same angleα.

For the rest of this document, we will assume without proof that all the statements
above are true, and we will demonstrate how the tool of inversion can be applied to
solve a variety of problems.

5 Geometric Constructions

First, note that using the construction illustrated in Figure 1 we can invert any point
other than the center ofk. So if we wish to invert a circle that does not pass through
O, we can just invert any three points on that circle and construct the circle passing
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through the three inverted points. If the circle does pass throughO, invert any two
points on the circle and draw the line passing through the inverted points, et cetera.

For our first application, consider the problem of constructing the circle or circles that
pass through two given pointsP andQ and is tangent to a given linel that does not
pass through bothP andQ. If l passes through one of them, let that one beP , and let
Q be the other.

ll

PP

QQ

kkP’P’

κκ

Figure 2: Circle tangent tol throughP andQ

(See Figure 2) Letk be any circle centered atQ (colored red in the figure) and invert
P andl throughk. The circle (or circles) we are seeking passes throughP which is
the center ofk, so its inversion will be a “line”. The pointP will invert to a new point
P ′ (which will not be at infinity, sinceP andQ are different). The linel will invert to
some circle which we’ll callκ.

The “line” which is the inversion of the circle(s) we are seeking is tangent toκ and
passes throughP ′. If P ′ lies onκ (meaningP lies onl), then there is one solution: the
tangent toκ atP ′. Otherwise, there are either two lines throughP ′ that are tangent to
κ (the external tangents), or none (ifP ′ lies insideκ). If we invert this line or these
lines (drawn in green) throughk we obtain the solution(s) which are colored blue in
the figure.

Since this is our first example, let’s look carefully at what occurred in this particular
arrangement. Note the following:

• In this example, the linel passes through the circlek so its inversion,κ, also
passes throughk at the same two points.

• The inversion through a circle of any line is a circle that passes through the
center of the circle of inversion. In this example,Q is the center of the circle of
inversion, and the circleκ passes throughQ.

• SinceP is outside the circlek its inversion,P ′, lies inside ofk.

• In this example, the two tangent lines toκ throughP ′ pass throughk so their
inversions (the blue circles) will pass throughk at the exact same points.
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Now let’s change a few things in the figure and see how that affects the solution. For
the first example, see Figure 3, where the only thing that is changed is the size of the
circle of inversion. This should result in exactly the same solutions (and you can see
that it does by comparing it to Figure 2)

ll
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Figure 3: Circle tangent tol throughP andQ

In the next example (Figure 4), note the differences, but also notice things that are the
same:

• The linel is outsidek, soκ is completely insidek.

• The pointsP andQ have moved relative tol so that one of the solution circles is
now very large. If the line throughP andQ were parallel tol, one of the solution
“circles” would be a line parallel tol.

ll
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Figure 4: Circle tangent tol throughP andQ

When are there no solutions? For this to occur,P ′ would have to lie inside the circle
κ and this means thatP andQ were on opposite sides ofl and in that case there are
obviously no solutions.
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As a second example, consider a similar problem: construct the circle (or circles) tan-
gent to two given circlesk1 andk2 and passing through a pointP . If only P were at
infinity, those lines would just be the common tangents to thecircles, right? So all we
need to do is invert everything relative to a circlek that is centered atP . Then we find
the common tangent lines to the resulting inverted circles and re-invert them ink to
obtain our solution(s).

k1k1

k2k2

PP kk

κ2κ2

κ1κ1

Figure 5: Circle throughP tangent tok1 andk2

In Figure 5 we see the complete construction. The circle of inversion (k) is in red,
the inversions of circlesk1 andk2 (calledκ1 andκ2) are in green. The four common
tangents toκ1 andκ@ (both internal and external) are in green, and the four blue circles
are obtained by re-inverting those four lines ink. You can see that all four circles pass
throughP and are tangent tok1 andk2.

k1k1

k2k2

PP
kk

κ2κ2

κ1κ1

Figure 6: Circle throughP tangent tok1 andk2

If k1 andk2 intersect, so willκ1 andκ2 so there will be no common internal tangents
and therefore there will be only two solutions. See Figure 6.

In Figure 7 the circlek2 is insidek1 and there are still four solutions. IfP is inside
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Figure 7: Circle throughP tangent tok1 andk2

both or outside both, there will be no solutions.

6 Ptolemy’s Theorem

Ptolemy’s Theorem says that in any cyclic quadrilateralABCD that:

|AC| · |BD| = |AD| · |BC| + |AB| · |CD|.

The quadrilateralABCD is said to be cyclic whenA, B, C andD all lie on the same
circle.

Here is a proof of Ptolemy’s Theorem using inversion in a circle. See Figure 8.

CC

DD

AA

BB

B′B′

C′C′

D′D′

kk

Figure 8: Ptolemy’s Theorem

Let k be a circle centered atA and invert all four points on the quadrilateralABCD
and the circle upon which they lie with respect tok. Since the circle passes throughA
which is the center of the circle of inversion, the circle will be inverted to a straight line
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(green in the figure). The pointA will be inverted to the point at infinity, butB, C and
D will be inverted to pointsB′, C′ andD′, all lying on the (green) line.

By the definition of inversion, we have:

|AD| · |AD′| = |AC| · |AC′| = |AB| · |AB′| = r2,

wherer is the radius of the circlek.

We will show that△ABC ∼ △AC′B′. From the equation in the last paragraph, we
have|AB|/|AC| = |AC′|/|AB′| and since6 A is equal to itself, by SAS similarity,
we have△ABC ∼ △AC′B′. Exactly the same argument can be used to show that
△ADC ∼ △AC′D′.

By similarity, we have:
|B′C′|

|BC|
=

|AB′|

|AC|
.

Thus:

|B′C′| =
|BC| · |AB′|

|AC|
,

and since|AB| · |AB′| = r2 we have:

|B′C′| =
|BC| · r2

|AC| · |AB|
. (1)

Exactly the same argument shows us that:

|B′D′| =
|BD| · r2

|AD| · |AB|
(2)

and

|C′D′| =
|CD| · r2

|AC| · |AD|
. (3)

But B′, C′ andD′ lie on a line, so we know that

|B′D′| = |B′C′| + |C′D′|. (4)

Substituting Equations 1, 2 and 3 into 4, we obtain:

|BD| · r2

|AD| · |AB|
=

|BC| · r2

|AC| · |AB|
+

|CD| · r2

|AC| · |AD|
,

and if we multiply through by(|AB| · |AC| · |AD|)/r2 we obtain the final result:

|AC| · |BD| = |AD| · |BC| + |AB| · |CD|.

By the way, if the quadrilateral inscribed in a circle happens to be a rectangle, then
we can use Ptolemy’s theorem (proved above completely usinginversion) to prove the
Pythagorean theorem, so in a sense, the Pythagorean theoremcan be proved using
inversion in a circle.

9



7 Miquel’s Theorem
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Figure 9: Miquel’s theorem

See Figure 9. On the left side of the figure, let△ABC be an arbitrary triangle and
let D,E andF be arbitrary points on the linesBC, CA andAB, respectively. (In the
diagram those points lie on the segments, but they can also lie outside the segments
and the theorem continues to hold.) Miquel’s theorem statesthat the circles passing
throughAFE, throughBFD and throughCDE are all concurrent at some pointM .

To prove the theorem, consider the diagram on the right of Figure 9. Let the circles
passing throughAFE andBFD meet at a pointM in addition to at pointF . We will
show thatM lies on the circleCDE.

Choose an arbitrary circlek centered atM and invert all the points ink so thatA inverts
to A′, et cetera. By the properties of inversion,F ′A′E′ lie on a line, as doF ′B′D′.
Since the pointM is inverted to the point at infinity, the point at infinity is inverted
back toM , and since the point at infinity is on all the lines that make upthe sides of
the triangles, we know thatA′F ′B′M , B′D′C′M andA′E′C′M are each a cyclic set
of points. If we can show thatD′, C′ andE′ are collinear, then by re-inverting that line
throughk we will arrive at the circleCEDM which will prove our theorem.

Let 6 A′F ′B′ = α, 6 A′E′C′ = β and6 B′D′C′ = γ. Since opposite angles in a cyclic
quadrilateral add toπ, the angle around pointM will be (π−α)+(π−β)+(π−γ) =
2π, soα + β + γ = π. But if C′ lies on one side or the other ofD′E′ thenα + β + γ
will not equalπ, soC′ lies onD′E′ and we are done.

8 Peaucellier’s Linkage

For many years, it was unknown whether it was possible to construct a mechanical
linkage that would turn perfect circular motion into perfect linear motion. Peaucellier’s
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Linkage (see figure 10) shows a linkage that achieves this conversion.

OO
AA

CC

DD

A’A’EE

Figure 10: Peaucellier’s Linkage

In the linkage, pointO is fixed on the circle, pointA is constrained to move on the
circle, and segmentsOC andOD are two bars of the lengthl, while segmentsAC,
CA′, A′D, andDA are four bars of lengthr. The bars are all hooked together with
flexible joints at pointsO, A, C, A′, andD. (The linesOA′ andCD in the figure are
solely for the proof—they are not part of the linkage.)

We can show that the pointA′ will lie on a straight line if we can show thatOA · OA′

is constant. If that is the case, thenA andA′ are inverse points with respect to a circle
centered atO. As the pointA moves on a circle that passes throughO, its inverse,
A′ must move along the inverse of that circle, which is a straight line sinceO lies on
the circle upon whichA is constrained to lie. (IfO is not on the circle,A andA′ will
still be inverse points relative to a circle centered atO, butA′ will merely move on a
different circle asA traces out the first one.

To show this, construct the linesOA′ andCD. SinceACA′D is a rhombus,CE ⊥
OA′ andE bisectsAA′. Thus we have

OA · OA′=(OE − AE)·(OE + EA′)=(OE − AE)·(OE + AE)=OE2 −AE2.

Using the pythagorean theorem on△AEC and on△OEC, we have

OE2 + EC2 = OC2 = l2

AE2 + EC2 = AC2 = r2.

Subtracting, we obtain:

OE2 − AE2 = l2 − r2 = OA · OA′.

Sincel2 − r2 is constant, so isOA · OA′ and we are done.
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9 The Steiner Porism

We will use inversion in a circle to prove an amazing propertyof pairs of circles, one
inside the other.

k1k1

k0k0

k1k1

k0k0

Figure 11: The Steiner Porism

See Figure 11. Consider two circlesk0 andk1, wherek0 lies insidek1, but not nec-
essarily centered inside. If you draw any circle between thetwo as in the figure, and
then continue to draw a series of circles that are tangent tok0 andk1 and also to the
previous circle you drew, one of two things happen. Either the final circle you draw
is also tangent to the original circle (as in the figure) or it is not. The amazing thing
is that if you achieve tangency with some choice of a startingcircle, you will achieve
tangency with any such choice. Equivalently, if you fail to achieve tangency with your
first choice, you will never achieve tangency with any other choice.

Figure 11 shows an example ofk0 andk1 where tangency occurs all the way around
and illustrates two different rings of circles with different starting points.

On the other hand, the result is obvious if the two circles areconcentric as in Figure 12.
Since the distance between the circles is constant, every starting position is equiva-
lent to every other starting position since you can just rotate the figure to make them
coincide.

We can prove the result by noting that if we do any inversion ofa diagram like Figure 11
the result will look somewhat the same: two circles with a ring of other circles between
them. Thus, if we can find, for any two circles likek0 andk1, an inversion that makes
the images ofk0 andk1 concentric, we will be done, since either the circles between
the concentric ones always match up or they never match up.

So all we need to do is find a circle of inversion that takes two arbitrary non-intersecting
circles into a pair of concentric ones. This can be done as shown in Figure 13

Given any two different circles, there is a line called the radical axis such that from
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Figure 12: Concentric Circles

every point on the line, tangents to the two circles have the same length. In the figure the
green line is the radical axis of circlesk0 andk1. The black line is the line connecting
the centers of those two circles. The radical axis meets the line of centers atR and by
the definition of the radical axis, the four external tangents fromR to the two circles
have the same length, so the green circle centered atR and passing through the tangent
points is perpendicular to both circles.

Let k be any circle centered atO, the intersection of that green circle centered atR
and the line connecting the centers ofk0 andk1. If we invert the two circles ink the
results (the magenta circles) will have to be perpendicularto two perpendicular lines:
the black line connecting the centers of the circles and the inversion of the green circle.
Circles simultaneously perpendicular to two perpendicular lines are concentric, so we
are done.

Note: If two circles intersect, it is trivial to find the radical axis: it is just the line
connecting the two points of intersection. In our case, the two circles don’t intersect,
so the problem is a bit more difficult. But since every pair of circles has a radical axis,
if there are three circles, the radical axes of each pair mustmeet at the same point
called the radical center, and from this one point (which maybe at infinity for certain
equal-sized circles), the external tangents to all three circles from this point are equal.

So to find the radical axis of two non-intersecting circles, perform the following con-
struction twice: draw a circle that intersects the two in twoplaces, construct their
radical axes, and find their radical center. Each of these radical centers lies on the radi-
cal axis of the two non-intersecting circles. Connect them with a line and you have the
radical axis for the original two circles.
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Figure 13: Inversion to Concentric Circles

10 The Arbelos of Pappus
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Figure 14: The Arbelos of Pappus

“Arbelos” is the Greek word for a shoemaker’s knife. In figure14, ignore everything
except for the three circles with diametersOA, OB, andAB, whereO, A, andB lie
on the same line, and notice that the area inside the larger circle and outside the two
smaller circles is divided into two pieces on the left and right. Either of these shapes,
which are basically a half-circle with two half-circles removed, look something like an
arbelos.
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From those original three circles, construct a series of circles on both sides of the circle
with diameterAB as shown in the figure. Each circle is tangent to the circles with
diametersOA andOB and also tangent to the previous circle in the series. In the
figure, the centers of those circles on the right are labeledC1, C2, et cetera, and those
on the left have centersC−1, C−2, . . . .

We will show that the distance betweenC−1 andC1 is twice the diameter of the circle
centered atC1, that the distance betweenC−2 andC2 is four times the diameter of
the circle centered atC2, and in general, that the distance betweenC−n andCn is 2n
times the diameter of the circle centered atCn. In the figure, this is illustrated forC−3

andC3 and the circles centered there—exactly5 circles of the same diameter as those
circles can be placed on a straight line between them. There would be1 between the
circles atC−1 andC1, 3 of them between the circles atC−2 andC2, et cetera.

The proof is not difficult, and since we have been looking at inversion and the Steiner
porism, it is clear that the situation here is very similar. If, for example, we can find
an inversion that leaves the circles centered atC−3 andC3 fixed and at the same time
maps the circles with diametersOA andOB into parallel lines, we will be done. The
circles between those centered atC−3 andC3, namely those centered atC−2, C−1, C0,
C1, andC2, under inversion will remain tangent to their neighboring circles, and to the
two parallel lines. Clearly, when we look atC−4 andC4, there will be two more circles
in the chain between them, so they will have two more circles on the line between them.
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Figure 15: Proof of the Arbelos Property

It is not hard to find such an inversion. Clearly, it will have to send the circles with
diametersOA andOB to parallel lines, so the circle of inversion must be centered at
O. Figure 15 shows the inversion of the circlesCi in such a circle centered atO and
passing through a pointR.

Since the circlesC−i andCi are symmetric relative to the lineOB, as the radius of the
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circle of inversion centered atO increases, it will expand through each pair of opposite
circles in exactly the same way. At some point as it expands through each pair, it
will be orthogonal to both and at that point, both of those circles will be inverted into
themselves.

11 A Four-Circle Problem

Four circles to the kissing come,
The smaller are the better.
The bend is just the inverse of
The distance from the centre.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of squares of all four bends
Is half the square of their sum

Frederick Soddy

See figure 16. Given a line, construct a circle tangent to it centered atC1 with radius
r1. Next, construct a circle tangent to both the line and the circle centered atC1. The
new circle has centerC2 and radiusr2. As shown in the figure, construct the circle
centered atC3 of radiusr3 tangent to both circles and to the line, as shown. Finally,
the circle centered atC4 of radiusr4 = 1 cm is tangent to the first three circles and lies
inside as in the figure. Find the perpendicular distance fromC4 to the line in terms of
r1, r2, r3, andr4 = 1 cm.

C1C1
C2C2

C3C3
C4C4

Figure 16: A Four-Circle Problem

Although at first it does not look like it, this is just a special case of the Steiner porism,
but in this case, the outer circle is the “circle” with an infinitely large radius—the
straight line. Imagine what would happen if this figure were inverted in a random circle
that was not special in any way (none of the lines or circles pass though its center). It
would become the simplest example of a Steiner porism with aninner and outer circle
and three circles filling the ring between them.

If that is the case, it does not matter whatr1, r2, andr3 are—the height above the line
will only depend on the radiusr4 = 1 cm.

16



C1C1 C2C2

C3C3

C4C4

BB

AA

Figure 17: A Four-Circle Problem

So we might as well choose a set of circles with convenient radii as in figure 17, where
r1 = r2.

Using the pythagorean theorem on the right triangle△C1BC3 we have:

r2

1 + (r1 − r3)
2 = (r1 + r3)

2

r2

1 + r2

1 − 2r1r3 + r2

3 = r2

1 + 2r1r3 + r2

3

r2

1 − 4r1r3 = 0

r1(r1 − 4r3) = 0

r1 = 4r3.

Now use the pythagorean theorem again, but this time on△C1BC4:

r2

1 + (r1 − 2r3 − r4)
2 = (r1 + r4)

2

r2

1 + (r1 − r1/2 − r4)
2 = (r1 + r4)

2

r2

1 + (r1/2 − r4)
2 = (r1 + r4)

2

r2

1 + r2

1/4 − r1r4 + r2

4 = r2

1 + 2r1r4 + r2

4

r2

1/4 − 3r1r4 = 0

r1(r1 − 12r4) = 0

r1 = 12r4.

But r4 = 1 cm, sor1 = 12 cm andr3 = 3 cm. The height ofC4 above the line is
7 cm.

The solution above seems pretty good, but there is an even easier way. See figure 18.
We can invert to a situation where two of the circles become straight lines, and the
calculations become even easier. If the radius of the circlecentered atC4 is 1 and the
unknown equal radii of the other two circles are bothr, we can see thatr satisfies:

r2 + (r − 1)2 = (r + 1)2.

The solution isr = 4 and from the figure it is clear that the pointC4 is 7 cm above the
lower line.
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C4C4

C2C2C3C3

AA

Figure 18: A Four-Circle Problem

Note that this problem could also have been solved using the Descartes circle theorem
presented in the form of a poem at the beginning of this chapter. In this case, one of
the “circles”—the straight line—has infinite radius, so 1 divided by that radius is zero.

12 Miscellaneous Problems

1. (From BAMO 2008) PointD lies inside the triangleABC. If A1, B1, andC1

are the second intersection points of the linesAD, BD, andCD with the circles
circumscribed about△BDC, △CDA, and△ADB, prove that

AD

AA1

+
BD

BB1

+
CD

CC1

= 1.

AA

BB

CC

DD

A1A1

B1B1

C1C1

AA

BB

CC

DD

A1A1

B1B1

C1C1

kkA
*

A
*

A1
*

A1
*

C
*

C
*

C1
*

C1
*

B
*

B
*

B1
*

B1
*

DD
A

*
A

*

A1
*

A1
*

C
*

C
*

C1
*

C1
*

B
*

B
*

B1
*

B1
*

Figure 19: BAMO 2008 Problem

See Figure 19. The original figure is on the left. To solve the problem, draw
circlek centered atD having radius1. Invert the pointsA, B, C, A1, B1 andC1

with respect tok, yielding pointsA∗, B∗, C∗, A∗
1, B

∗
1 andC∗

1 , respectively.

Since all three circles pass throughD which is the center of inversion, the image
of each is a line so the inverse points all lie on the (green) triangleA∗B∗C∗.
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By the definition of inversion, and the fact that the radius ofk is 1, we have:
|AD| · |A∗D| = 1, |A1D| · |A∗

1D| = 1, and so on.

Consider the first term in the result we are trying to prove:|AD|/|AA1|. We
know that|AA1| = |AD| + |DA1| so we obtain:

|AD|

|AA1|
=

1/|A∗D|

1/|A∗D| + 1/|A∗
1
D|

=
|A∗

1D|

|A∗D| + |A∗
1
D|

=
A∗

1D

A∗A∗
1

.

Doing the same thing for each of the other quotients in the original problem and
doing the substitution, the inequality we are seeking to prove becomes:

A∗
1D

A∗A∗
1

+
B∗

1D

B∗B∗
1

+
C∗

1D

C∗C∗
1

= 1.

If by A(△ABC) we indicate the area of triangleABC, it is clear from the figure
that:

A∗
1D

A∗A∗
1

=
A(△B∗C∗D)

A(△A∗B∗C∗)
,

and similarly for the other fractions.

Thus our original equality is equivalent to:

A(△B∗C∗D)

A(△A∗B∗C∗)
+

A(△A∗C∗D)

A(△A∗B∗C∗)
+

A(△A∗B∗D)

A(△A∗B∗C∗)
= 1.

The three triangles whose areas appear in the numerators together make up the
area of the triangle in the denominator, so the problem is solved.

2. Supposek1, k2, k3 andk4 are four circles such thatk1 is tangent tok2, k2 is
tangent tok3, k3 is tangent tok4, andk4 is tangent tok1. Show that the four
points of tangency lie on a circle or on a straight line. See the diagram on the left
in Figure 20.

k1k1

k2k2

k3k3

k4k4

k1k1

k2k2

k3k3

k4k4

kk

Figure 20: Four Tangent Circles
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The proof isn’t too hard. Pick any of the tangent points (say the one between
k1 andk2 and consider a circlek centered at that point. Invert all four circles
k1, . . . , k4 with respect tok. Sincek1 andk2 pass through the center of inversion,
their inverses will be parallel straight lines. The images of k3 andk4 will be two
circles tangent to each other and tangent to the parallel lines. See the diagram
on the right in Figure 20. It requires only elementary geometry to show that the
three tangent points of the green circles and lines lie in a straight line, so their
inversion back throughk will yield either a circle or a straight line.

3. Let p be the semiperimeter of△ABC. PointsE andF are on lineAB such
that |CE| = |CF | = p. Prove that the circumcircle of△CEF is tangent to the
excircle of△ABC with respect to the sideAB. See the diagram on the left of
Figure 21.

AA
BB

CC

EE

FF
AA

BB

CC

EE

FF

Figure 21: Circumcircle-Excircle Tangency

Invert in a circle centered atC and having radiusp. This will leave the points
E andF fixed (since they lie on the circle of inversion). It will alsoleave the
excircle fixed, since it is tangent to the linesCA andCB and those are perpen-
dicular to the circle of inversion. On the other hand, the circumcircle of△CEF
is the straight line passing throughE andF since it passes through the center
of inversion. By the definition of the excircle,EF is tangent to it, and thus its
inverse relative to the circle of inversion is also tangent to it.

4. (IMO 1985) A circle with centerO passes through pointsA andC and intersects
the sidesAB andBC of △ABC at pointsK andN , respectively. The circum-
circles of triangles△ABC and△KBN meet at distinct pointsB andM . Prove
that 6 OMB = 90◦. See the diagram on the left of Figure 22.

Invert through a circlek centered atB. PointsA′, C′ andM ′ are collinear and so
areK ′, N ′ andM ′, whereasA′C′N ′K ′ lie on a circle. We need to find where
O′ (the image ofO) lies. Inversion doesnot map the center of a circle to the
center of the inverted circle.

Draw tangents fromB to the circleACNK, with tangent pointsB1 andB2. The
B′

1 andB′
2 are the feet of the tangents fromB to the circleA′C′N ′K ′ and since
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OO

AA CC

BB

KK

NN
MM OO

AA CC

BB

KK

NN
MM

kk

A’A’

C’C’

M’M’K’K’ N’N’

B1B1

B2B2

B’1B’1

B’2B’2

O’O’

Figure 22: IMO 1985 Problem

L lies on the circleBB1B2 its image,O′, lies on the lineB1B2, and in fact is at
the midpoint of that line.

Note thatM ′ is on the polar of pointB with respect to the circleA′C′N ′K ′,
which is the lineB1B2. Thus6 OBM = 6 BO′M ′ = 6 BO′B′

1 = 90◦.

13 Descartes’ Theorem

C1C1

C2C2

C0C0

C3C3

C’3C’3

Figure 23: Descartes’ Theorem

The following theorem (Descartes’ theorem) is a bit difficult to prove, but it will pro-
vide some very interesting results related to inversion. See Figure 23. If we have three
mutually-tangent circlesC0, C1 andC2 having radiir0, r1 andr2, respectively, then
there are two other circles tangent to all three (shown in thediagram asC3 andC′

3). If
k0 = 1/r0, k1 = 1/r1 andk2 = 1/r2 then the two solutions fork3 of the following
quadratic equation are the radii ofC3 andC′

3:

2(k2

0 + k2

1 + k2

2 + k2

3) = (k0 + k1 + k2 + k3)
2. (5)
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C1C1

C2C2

C0C0

C3C3

C’3C’3

kk

Figure 24: Constructing the tangent circles

Using inversion in a circle, it is fairly easy to construct the two circlesC3 andC′
3. See

Figure 24.

LetO be the point of tangency ofC1 andC2 and letk be the circle of inversion centered
atO. If we invert the three circles, we know thatC1 andC2 must invert to lines since
they pass through the center of inversion. We also know that those lines are parallel,
since the only place they “meet” is at the image ofO, which is inverted “to infinity”.
SinceC0 is tangent to bothC1 andC2 its image must be tangent to their images so it
must invert to a circle that is tangent to the two parallel lines as in the figure. (In the
figure, the images ofC0, C1 andC2 are shown in green.)

The circlesC3 andC′
3 are to be tangent toC0, C1 andC2 so their images must be tan-

gent to the images of those three circles. These are easy to construct: they fit between
the two parallel green lines and are tangent to both circles.In the figure, only one of
those is shown in magenta; the other would be tangent on the other side of the green
circle, so it is below the diagram. If we re-invert those two circles in the circlek, we
obtainC3 andC′

3.

Descartes’ theorem also holds for circles with “infinite radius”, in other words, for
straight lines. This case will correspond to having one of the k values in Equation 5.
If r is the radius of a circle, the valuek = 1/r is often called the curvature. Ifr is
infinite, the curvature is zero, and that makes sense: a straight line is not curved at all,
and thus has zero curvature. Tiny circles are tightly curvedand have a large curvature
and vice-versa.

Now we can prove a very interesting result of Descartes’ theorem: If we can find four
mutually-tangent circles, each of which has a curvature that is an integer (possibly
zero), then we can choose any three of them and construct an additional circle that is
tangent to those three and different from the fourth which also has an integer-valued
curvature.

Suppose we begin with four particular values ofki that satisfy:

2(k2

0 + k2

1 + k2

2 + k2

3) = (k0 + k1 + k2 + k3)
2.
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We can find an additional value fork3 as follows. We simply need to solve forx in the
following quadratic equation:

2(k2

0 + k2

1 + k2

2 + x2) = (k0 + k1 + k2 + x)2.

If we expand the equation above, we obtain:

x2 − 2x(k0 + k1 + k2) − 2(k0k1 + k1k2 + k2k0) + k2

0 + k2

1 + k2

2 .

The two roots of this equation add to2(k0 + k1 + k2), but we know that one of the
roots isk3, so the other is2(k0 + k1 + k2) − k3. Since all theki are integers, so must
be the other root.

If we state this in terms of radii instead of curvatures, it simply means that if all the
radii have the form1/n, wheren is an integer, then the newly-generated circle will
also have a radius of exactly the same form.
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Figure 25: Tangent circles

Figure 25 shows what we can do with repeated inversions to construct more and more
mutually-tangent circles. We begin with a large circle of radius1 with two smaller cir-
cles inside having radii1/2 each, and two more having radius1/3 each. The numbers
in some of the circles in the figure represent the inverse of the radius of that circle. The
initial figure starts with five circles: the outer one and the four inside labeled with ei-
ther a2 or a3. We can show that the combination of radii{1/1, 1/2, 1/2, 1/3}satisfies
Descartes’ theorem, since:

2(12 + 22 + 22 + 32) = (1 + 2 + 2 + 3)2.
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In the equation above, replace one of the2’s on each side with anx and solve, and we
obtain eitherx = 2 or x = 6, so the new mutually-tangent circle must have radius6
(which means that the radius is1/6), and so on. Try checking a couple more.

Another application of this yields the so-called Farey circles. We begin with a straight
line and a series of circles of radius1/2 tangent to it and to the next circle. Using
Descartes’ theorem (or in this case, just a simple application of the Pythagorean theo-
rem), we can see that another circle fitting between any pair of circles of radius1 and
also tangent to the line will have radius1/8. If you use Descartes’ theorem, remember
that the line has curvature zero.

Figure 26: Farey (or Ford) circles

As above, we can repeatedly toss out one circle of a set (but always keep the line as
one of the “circles”) and we will generate the Farey circles.See Figure 26. These are
also called Ford circles.

If we imagine all these circles placed on the plane it turns out that for any fractionp/q
wherep andq are relatively prime, then there is a circle centered at(p/q, 1/(2q2) and
having radius1/(2q2). This is the complete set of the Farey or Ford circles.
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