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1 Introduction

The Zome system is a construction set based on a set of p&stis and balls that can
be attached together to form an amazing set of mathemataradirtistically interesting
structures.

For information on Zome and for an on-line way to order kitparts, see:
http://www.zometool.com

The main Zome strut colors are red, yellow and blue and mosthait we’ll cover
here will use those as examples. There are green strutsréhaeeessary for building
structures with regular tetrahedrons and octahedronsabmdst everything we say
about the red, yellow and blue struts will apply to the greeaso The green ones are
a little harder to work with (both physically and mathemaliig) because they have a
pentagon-shaped head, but can fitinto any pentagonal hidle idifferent orientations.
With the regular red, yellow and blue struts there is only wag to insert a strut into
a Zome ball hole.

For these exercises, we recommend that students who haweried with the Zome
system before restrict themselves to the blue, yellow addtreits. Students with some
prior experience, or who seem to be very fast learners, gahuitding things (like
a regular octahedron or a regular tetrahedron) with somengse&ruts. Most people
find that their first experience with green struts can be ypiiicouraging, and even
building their first regular tetrahedron can be a frustgxperience due to all the
possible angles that can be formed and the fact that the gteseis do not lock as
solidly into the Zome balls.

2 Overview of the Exercises

Although the Zome system can be used to investigate mang@spfanathematics and
geometry, the exercises in this document will be relateduets theorem.



Euler’s theorem simply states that if you take a figure thébpmlogically equivalent
to a sphere (this is explained in Section 4), if you count tamber of vertices\(),
edges ) and faces k), you will always find that’ — F + F' = 2. The value2 for

V — E + Fis known as the “Euler characteristic” of the sphere. Bydini structures
that are sphere-like and counting E and F' and making tables of the values, the
relationship can be discovered. The discovery of the miatiip, while interesting, is
secondary to what you're really “tricking” the studentsoigtoing; namely, learning to
count in a logical, organized way. Counting the number ofesgddaces and vertices
of a cube is easy (although a lot of students will probablycmisit the edges), but for
more complex figures, like a dodecahedron or icosahedramticey can be tricky, and
it's a good idea to have alternative ways to count to checlattssvers obtained.

In these exercises we will not formally prove Euler’s thenréut will provide a huge
amount of evidence that it is true. If you are interested iorenfal proof of the theorem,
see:

http://www.geometer.org/mathcircles/euler.pdf

3 ZomePractice

Many students may never have seen the Zome system and foedésain, it is a good
idea for them to practice building a few simple structuregéo a feeling for how it
works. The struts are tough, but not indestructible, so hslstudents to take a little
care to avoid breaking the plastic struts, especially whey tire disassembling their
projects. The best way to avoid damage is to be sure to pulttiés directly away
from the Zome balls rather than applying any sideways tarque

Important note: Before you let the students leave the exercise, ask thenkécafaart
any structures they have built. While it is easier to take Eatnuctures apart than to
put them together, if you've got a dozen builders and only disenantler (you), you
will be very sorry at the end of the day!

Have everyone build the following three objects that regjoinly blue struts all having
the same lengths (the medium-length blue struts work vellj:weecube, an icosahe-
dron and a dodecahedron. Point out that in each of thesertgakar solids, every face
is regular (so the faces of the cube are perfect squaresathe 6f the icosahedron are
equilateral triangles, and the faces of the dodecahedearegular pentagons. Figure 1
illustrates those three figures. Students may have soméepmslwith the dodecahe-
dron because although it is relatively easy to constructrdgoen that forms the first
face, each face has an “inside” and an “outside” and thed@aisdf the pentagon has to
be in the interior of the dodecahedron. In other words, if thave trouble, have them
turn over their original pentagon and try again.



Figure 1: Cube, Icosahedron and Dodecahedron

4 CountingV, F and F

After the students have constructed those examples, hawne ¢bunt the number of
vertices (Zome balls), edges (Zome struts) and faces (fi&ame surrounded by balls
and struts) and write their results in a table like the onewglvhereV, E and F' refer
to the counts of vertices, edges and faces. These countseadonie in various ways,
and if the students can figure out how to count them in more ¢im@way and obtain
the same result, then they can be more confident that the &ouotrect. After the
table has enough entries, lead the students to discoveadhthft for every object they
make that doesn’t include “holes”, thit — £ + F' = 2. (For now, we’'ll say that
an object doesn't include holes if you could imagine inflgtinballoon inside so that
it completely filled the object without having to have thesidé of the balloon touch
itself. If you imagine putting a balloon inside a doughnb#ged object and inflating
it, you could fill the doughnut, but the balloon would have tore around and touch
itself, so the doughnut has a hole.)

| Object | Vertices /) | Edges £) | Faces F) | |
Cube 8 12 6

Notice in the table above there is one extra unmarked colutrerewve’ll eventually
write the formulal’ — E' + F and that column will be filled with the numbe&r An
example of what the students might come up with appears iticde®. Finally, a
worksheet for students appears on the final page of this dextum

Some counting strategies that work include putting the abiea fixed orientation so
the components of interest can be classified. For exampdeutiot the edges in a cube,
place it face-down on a table, and then there4ssiges around the top and bottom
faces, andl connecting the top and bottom, making a totall ®f To count the faces
on a dodecahedron, when the object is placed with a face fidteotable, there are the
top and bottom faces, sharing an edge with the top aAdsharing an edge with the
bottom, for a total ofi 2. Have the students find similar strategies to count the featu
(edges, faces and vertices) on other objects.

Obviously, you can disassemble a structure and count theezmiis to obtaii” and



the struts to obtair, but you still need to count the faces carefully.

Another nice strategy that works for many objects (and thegalar ones, in particu-
lar) is to imagine that the figure is made of cardboard and yit nto its individual
faces. For example, suppose you have figured out that thahedson has exactB0
faces. If you cut it up, you will have0 equilateral triangles. Each triangle ttasdges,
so the triangles together hage x 3 = 60 edges. But each cut of the original icosa-
hedron converted one edge to two, so the number of edges aritlieal icosahedron
containeds0/2 = 30 edges. Similarly, the cut triangles each haweertices, so after
the cutting, there arg0 x 3 = 60 vertices. But if you look at the original icosahedron,
5 triangles meet at every vertex so when you cut it apart, ehtecriginal vertices
will appear5 times, onb different triangles, so there afi®/5 = 12 vertices in the
icosahedron.

This “counting by cutting” strategy can be used on the cultedmtdecahedron as well.

Here are the results the students should obtain. For the tube8, F = 12, F' = 6.
For the dodecahedro] = 20,EF = 30, F = 12, and for the icosahedroit] =
12, E = 30, F = 20.

5 MoreExamples

Have the students make more objects that do not contain lwlesre “holes” are
defined in the first paragraph of Section 4) and for each sujtpthave them count
the number of edges, faces, and vertices and enter thoseensimliheir table. These
new objects need not be regular, and make sure the studemtthat they are welcome
to use struts of different lengths and colors.

If the students lack imagination, here are some things tlaeyhuild. Tetrahedrons
(V. =4,FE = 6,F = 4) and octahedrond{ = 6, EF = 12, F = 8). Regular tetra-
hedrons and octahedrons cannot be built without the greetssbut irregular ones,
where the edges are different colors and lengths can be made.

Figure 2: Soccer Ball

Other examples include pyramids or other “cone-like” figuvdth flat bases whose
vertices are connected to the tip of the cone with struts. eMmmplex examples



include the “soccer ball” which is technically called a tcated icosahedron (see Fig-
ure 2, which can be built with blue and yellow struts that dosest in length to the blue
ones), or even a copy of the Zome ball itself (this requirestsind medium-length
blue struts only). The truncated icosahedron countsre-(60, £ = 90, F' = 32)
and the Zome ball's counts ar¥ (= 60, £ = 120, F' = 62). A modified version of
the Zome ball where the rectangles are replaced by squandsedauilt entirely using
only blue struts of a single length.

The features of both the truncated icosahedron and Zomedrale counted using the
“counting by cutting” strategy explained at the end of Sat#. The soccer ball has
12 pentagons an#l0 hexagons, but exactly three edges meet at each vertex. fuytou
it up, you'll have32 faces,12 x 5 + 20 x 6 = 180 edges and vertices. As before,
all edges are double-counted, making the actual numbergefs#80/2 = 90, and all
vertices are triple-counted, making the actual numisér3 = 60.

To count the faces of the Zome ball, see Section 8, but once&kgow there are 2
pentagonal faceg0 triangular faces and0 rectangular faces, you can see that in the
cut-up version of a cardboard Zome ball, there willll2ex 5 + 20 x 3 + 30 x 4 = 240
edges and vertices on the pieces after the cuts. The edgésurke-counted yielding
240/2 = 120 edges of the original Zome ball and since four struts meedélt gertex,
they are quadruple-counted, yieldia¢0,/4 = 60 vertices.

Another strategy to use when constructing objects is to teleethat is complete and
modify it by adding features. For example, if you begin witbube and extend one
of the faces so that it looks like an Egyptian pyramid, yoweetiiely eliminate the
original face and replace it by the four faces of the pyraithids increasing the number
of faces byl — 1 = 3. Only one vertex is added and none are deleted, so the nurhber o
vertices increase by. Finally, there are new edges, so the number of edges increase
by 4. Since the original cube had = 8, F = 12, F = 6, the new object will have
V=84+1=9,F=12+4=16,F = 6+ 3 = 9. Notice that the net change this
makes tdl — E + F'is1 — 4 + 3 = 0. Thus if Euler's theorem was true for the cube,
it will be true for the new object. Not only that, but if it wasie forany object with

a rectangular face and that face was modified as we did theofatiee cube, the new
object will satisfy Euler’'s theorem if the old one did.

Here’s another idea to think about. What if you make a Zomsgctire that satisfies
Euler’s theorem, and then you build one that is exactly twisdig by replacing each
strut in the original by a “strut-ball-strut” (effectivelystrut that's twice as long)? Well,
the number of faces will remain the same, but if the origitalcture hach struts, the
new one will have an additional struts andn balls. Thus, botid/ and F' will be
increased by, but this will leave the quantity’ — F + F' unchanged.

6 Duality

If you look at theV, E and F' counts of the cube and octahedron, you'll notice that
they are the same except that the value® @nd F' are exchanged. Exactly the same
thing occurs with the dodecahedron-icosahedron pair. dbés not occur by chance:



these pairs are called “duals” and a dual can be formed fronyrofthe objects we
can make.

To see more clearly what a dual object is, consider the fagvezonstruction, and
for concreteness, think about it in relation to the cube. g@sp the cube’s vertices
and edges are red. Place blue vertices in the center of edhb ofibe’s faces. Next,
connect the blue vertices that lie on adjacent faces witk bliges and consider the
figure formed. If you look toward the center of the cube thitoegch red edge, you
will see exactly one new blue edge crossing it. Similarlydti look toward the center
of the cube through each red vertex you will see that a fac®snded by blue lines
lies between the red vertex and the center of the cube. Thes)awly-formed solid
has exactly as many edges as the cul®, (it has the same number of faces as the
cube had verticess] and the same number of vertices as the cube had fare¥i{e
newly-formed object is called an octahedron, and it is datltee dual of the cube.

This explains why the numbers work out as they do, but whatsis mteresting is
that the dual of the octahedron is the cube again. A similagtioccurs with the
dodecahedron-icosahedron pair. The tetrahedron is itsdwah (It is called “self-
dual”, for that reason.)

Another interesting feature of dual structures that is obsiif you consider the con-
struction above is that in the dodecahedron, for exan®laces meet at each vertex
and5 vertices surround each face. For its dual, the icosahethergpposite is trues
faces meet at each vertex ahdertices surround each face. For the cube-octahedron
pair, the numbers arkand4, and for the tetrahedron, which is self-dual, the numbers,
of course must be the santeands.

Have the students look for other dual structures. What wbelthe dual of an Egyptian
pyramid, the soccer ball, or the Zome ball?

7 Objectswith Holes

Figure 3: Doughnut

Itis possible to construct objects with holes using Zomed,amore general version of
Euler’s theorem can be obtained. For example, if we cons&rdoughnut-like object
(something like what is illustrated in Figure 3 which Has= 16, F = 32, F = 16),

then we will find thatV — £+ F' = 0. This will be true for any doughnut-like, or



one-holed object. If an object has two holes, you will findttHa— £ + F = —2 and
each additional hole subtrac@snore from the Euler characteristic. In fact, the number
of holes in a very complex object can be counted by finding thierecharacteristic
for that object and from that deriving the number of holest bhumans, it’s pretty
easy just to count the holes, but a computer trying to do theedar a mathematical
description of the model would be hard-pressed to “see” #hleshand would find

it far easier just to calculate the Euler characteristicit fbund, for example, that
V — E + F = —22, that would mean that the object h&2iholes.

Itis not hard to do, but it takes a while to construct Zome ofgjvith holes, so experi-
menting with such objects is probably only reasonable to itlo students who already
know about the simple version of Euler’s theorem and who Isawee previous expe-
rience with the Zome system.

8 TheZomeBall

Figure 4: The Zome Ball

Look carefully at a Zome ball. (It is better to look at a phydiball, but an image of
one appears in Figure 4. It is highly symmetric, and has hiblaswill accept struts
of three shapes: rectangles with an aspect ratio of roughly.618 (which happens
to be the golden ratio), equilateral triangles and reguéasntggons. Every pentagonal
hole looks the same: it is surrounded by 5 rectangular holé$ariangular holes. The
same can be said of every hole: the shapes and orientatidghe akighboring holes
are the same for every hole in the ball.

Another way to convince yourself that all the holes of a derthape are basically
identical is to place a Zome ball on a table balanced on a Hagarticular shape (say
a rectangle). Now take another Zome ball and place @mnof its rectangular holes
(or hole of the same shape as the first ball). If you rotate ¢oersd ball so that the
rectangles on top have the same orientation, you will find ¢lvary hole matches in
shape and orientation in the two balls.

There are 12 pentagon-shaped holes and if you imagine #nattitagons were all left
in their planes but expanded until their edges touched theesepentagon edges, the



resulting figure would be a dodecahedron (a regular 12-gdgdhedron as illustrated
in Figure 1).

If you think about this pentagon expansion, every pair ohednt pentagons would
close over a rectangular hole, so there are the same numbectahgular holes as
there are edges in a dodecahedron; namely, 30.

Finally, again visualizing the expansion of the pentagdmédés, each triangle on the
Zome ball will be covered by a vertex of the final dodecahedsorthere are the same
number of triangles as there are vertices of a dodecaheaomely, 20.

A dual argument can be made: instead of expanding the pamdaguil their edges
merge, expand the triangles in the same way, and the regfijure will be a regu-

lar icosahedron — a polyhedron with 20 identical trianglsides. Each vertex of the
resulting icosahedron (of which there are 12) correspomdsgentagonal hole in the
Zome ball and each edge of the icosahedron (of which ther@®reorresponds to one
of the rectangular holes in the Zome ball.

Luckily, we obtain the same counts using both approachegpeh®agonal holes, 20
triangular holes and 30 rectangular holes for a total2of- 20 + 30 = 62 holes.

9 Appendix

Here are some examples of what the students might includeeintables. The7i-
Cylinder” is a sort of cylinder made by extruding arsided polygon so that it has two
faces made of that polygon plusrectangles connecting the corresponding sides. The
n-Pyramid is a sort of cone with am-sided polygonal base and all the base vertices
are connected to a vertex that forms the tip of the cone. ArpEay pyramid is made

by applying this process to a square.

| Object | Vertices (/) | Edges€) | Facesf) [V —E+ F |
Cube 8 12 6 2
Octahedron 6 12 8 2
Tetrahedron 4 6 4 2
Egyptian Pyramid 5 8 5 2
Dodecahedron 20 30 12 2
Icosahedron 12 30 20 2
n-Cylinder 2n 3n n+2 2
n-Pyramid n+1 2n n+1 2
Truncated Icosahedron 60 90 32 2
Zome Ball 60 120 62 2




Zome Patterns Wor ksheet

Directions:

Important: When you finish with this exercise, please take any strustyoe have
built completely apart and sort the pieces into the appad@dontainers.

As a warm-up, use zome parts to build each of the followingcstires: a cube, an
icosahedron and a dodecahedron. For each of these stictatewill need only blue

struts, all having the same length. The struts are tought lsupossible to break them.
Push them straight into and pull them straight out of the Zbaiks to make and break
connections. The figure below shows models of the threetstieEyou are trying to

build.

For each of the objects, count the number of vertices (Zortg) bedges (Zome struts)
and faces (flat regions surrounded by balls and struts). Weuse V', £ and F' to
indicate the number of vertices, edges and faces, respctifour structures. Try to
figure out different ways to count them by dividing them intasses, or by whatever
other means you can think of. These structures are relatbady to count, but other
examples will be more complex.

Whenever you build a structure and codfat! and F', enter that information into the
table at the end of this worksheet.

Today we are interested in objects that do not contain “latethe sense that if you

blow up a very flexible balloon inside the object, it would ¢buall the struts and
balls without having to touch itself. (For example, a dougthshaped figure would not
count, since if you inflated a balloon inside, two sectionthefballoon’s outer surface
would eventually come in contact.) Another way to think ouy@bjects is that if

they were completely flexible, they could be distorted, withcutting, to the form of a
sphere. A mathematician would say that they are topoldgieguivalent to a sphere.

Now build some more models that are “topologically equikate a sphere”. Do not
neglect simple models like tetrahedrons and octahedranisivwill require different-
length and different-color struts). Other ideas includerfes”, Egyptian pyramids,
and so on. One easy way to make new models is to add faces tastimgxnodel.
For example, imagine adding a sort of Egyptian pyramid ondbp cube to make
something that looks a bit like a house with a roof. For eacthefmodels that you
build, carefully count/, E andF, and record your results in the table at the end of the
worksheet.



More challenging objects (both to build and to count #he E and F' features for
include the “soccer ball” as illustrated below, and you caenemake a large model of
the Zome ball itself. The soccer ball will require only blugdayellow struts where all
the blue struts are the same as are all the yellow ones, anc:Hliogy strut size is as
close as possible to the blue strut size. A model of the Zoi@self will require two
different lengths of blue struts. Again, count and recoedith £ and F' data for each
structure.

After you have collected your data, try to find patterns inHint: There is a simple
algebraic expression relatiig, & andF'. Once you find the expression, try to come
up with reasons why it might be true.

An advanced topic you can experiment with is to see if you aaa dimilar analysis
of objects with a hole in them (objects that are topologjcatiuivalent to a doughnut,
or torus).

The cube and octahedron are said to be dual. So are the dedecaland icosahedron.
The tetrahedron is said to be self-dual. What might this A¢éint: Look at the values
for V, E andF for these pairs of objects. Do other objects have duals sstanse?

10



Object | Vertices /) | Edges £) | Faces f) |
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