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1 Introduction

The Zome system is a construction set based on a set of plasticstruts and balls that can
be attached together to form an amazing set of mathematically or artistically interesting
structures.

For information on Zome and for an on-line way to order kits orparts, see:

http://www.zometool.com

The main Zome strut colors are red, yellow and blue and most ofwhat we’ll cover
here will use those as examples. There are green struts that are necessary for building
structures with regular tetrahedrons and octahedrons, andalmost everything we say
about the red, yellow and blue struts will apply to the green ones. The green ones are
a little harder to work with (both physically and mathematically) because they have a
pentagon-shaped head, but can fit into any pentagonal hole infive different orientations.
With the regular red, yellow and blue struts there is only oneway to insert a strut into
a Zome ball hole.

For these exercises, we recommend that students who have notworked with the Zome
system before restrict themselves to the blue, yellow and red struts. Students with some
prior experience, or who seem to be very fast learners, can try building things (like
a regular octahedron or a regular tetrahedron) with some green struts. Most people
find that their first experience with green struts can be pretty discouraging, and even
building their first regular tetrahedron can be a frustrating experience due to all the
possible angles that can be formed and the fact that the greenstruts do not lock as
solidly into the Zome balls.

2 Overview of the Exercises

Although the Zome system can be used to investigate many aspects of mathematics and
geometry, the exercises in this document will be related to Euler’s theorem.
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Euler’s theorem simply states that if you take a figure that istopologically equivalent
to a sphere (this is explained in Section 4), if you count the number of vertices (V ),
edges (E) and faces (F ), you will always find thatV − E + F = 2. The value2 for
V −E +F is known as the “Euler characteristic” of the sphere. By building structures
that are sphere-like and countingV , E andF and making tables of the values, the
relationship can be discovered. The discovery of the relationship, while interesting, is
secondary to what you’re really “tricking” the students into doing; namely, learning to
count in a logical, organized way. Counting the number of edges, faces and vertices
of a cube is easy (although a lot of students will probably miscount the edges), but for
more complex figures, like a dodecahedron or icosahedron, counting can be tricky, and
it’s a good idea to have alternative ways to count to check theanswers obtained.

In these exercises we will not formally prove Euler’s theorem, but will provide a huge
amount of evidence that it is true. If you are interested in a formal proof of the theorem,
see:

http://www.geometer.org/mathcircles/euler.pdf

3 Zome Practice

Many students may never have seen the Zome system and for thatreason, it is a good
idea for them to practice building a few simple structures toget a feeling for how it
works. The struts are tough, but not indestructible, so ask the students to take a little
care to avoid breaking the plastic struts, especially when they are disassembling their
projects. The best way to avoid damage is to be sure to pull thestruts directly away
from the Zome balls rather than applying any sideways torque.

Important note: Before you let the students leave the exercise, ask them to take apart
any structures they have built. While it is easier to take Zome structures apart than to
put them together, if you’ve got a dozen builders and only onedismantler (you), you
will be very sorry at the end of the day!

Have everyone build the following three objects that require only blue struts all having
the same lengths (the medium-length blue struts work very well): a cube, an icosahe-
dron and a dodecahedron. Point out that in each of these threeregular solids, every face
is regular (so the faces of the cube are perfect squares, the faces of the icosahedron are
equilateral triangles, and the faces of the dodecahedron are regular pentagons. Figure 1
illustrates those three figures. Students may have some problems with the dodecahe-
dron because although it is relatively easy to construct a pentagon that forms the first
face, each face has an “inside” and an “outside” and the “inside” of the pentagon has to
be in the interior of the dodecahedron. In other words, if they have trouble, have them
turn over their original pentagon and try again.
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Figure 1: Cube, Icosahedron and Dodecahedron

4 Counting V , E and F

After the students have constructed those examples, have them count the number of
vertices (Zome balls), edges (Zome struts) and faces (flat regions surrounded by balls
and struts) and write their results in a table like the one below, whereV, E andF refer
to the counts of vertices, edges and faces. These counts can be done in various ways,
and if the students can figure out how to count them in more thanone way and obtain
the same result, then they can be more confident that the countis correct. After the
table has enough entries, lead the students to discover the fact that for every object they
make that doesn’t include “holes”, thatV − E + F = 2. (For now, we’ll say that
an object doesn’t include holes if you could imagine inflating a balloon inside so that
it completely filled the object without having to have the outside of the balloon touch
itself. If you imagine putting a balloon inside a doughnut-shaped object and inflating
it, you could fill the doughnut, but the balloon would have to come around and touch
itself, so the doughnut has a hole.)

Object Vertices (V ) Edges (E) Faces (F )

Cube 8 12 6

Notice in the table above there is one extra unmarked column where we’ll eventually
write the formulaV − E + F and that column will be filled with the number2. An
example of what the students might come up with appears in Section 9. Finally, a
worksheet for students appears on the final page of this document.

Some counting strategies that work include putting the object in a fixed orientation so
the components of interest can be classified. For example, tocount the edges in a cube,
place it face-down on a table, and then there are4 edges around the top and bottom
faces, and4 connecting the top and bottom, making a total of12. To count the faces
on a dodecahedron, when the object is placed with a face flat onthe table, there are the
top and bottom faces,5 sharing an edge with the top and5 sharing an edge with the
bottom, for a total of12. Have the students find similar strategies to count the features
(edges, faces and vertices) on other objects.

Obviously, you can disassemble a structure and count the Zome balls to obtainV and
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the struts to obtainE, but you still need to count the faces carefully.

Another nice strategy that works for many objects (and theseregular ones, in particu-
lar) is to imagine that the figure is made of cardboard and you cut it into its individual
faces. For example, suppose you have figured out that the icosahedron has exactly20

faces. If you cut it up, you will have20 equilateral triangles. Each triangle has3 edges,
so the triangles together have20 × 3 = 60 edges. But each cut of the original icosa-
hedron converted one edge to two, so the number of edges in theoriginal icosahedron
contained60/2 = 30 edges. Similarly, the cut triangles each have3 vertices, so after
the cutting, there are20× 3 = 60 vertices. But if you look at the original icosahedron,
5 triangles meet at every vertex so when you cut it apart, each of the original vertices
will appear5 times, on5 different triangles, so there are60/5 = 12 vertices in the
icosahedron.

This “counting by cutting” strategy can be used on the cube and dodecahedron as well.

Here are the results the students should obtain. For the cube, V = 8, E = 12, F = 6.
For the dodecahedron,V = 20, E = 30, F = 12, and for the icosahedron,V =

12, E = 30, F = 20.

5 More Examples

Have the students make more objects that do not contain holes(where “holes” are
defined in the first paragraph of Section 4) and for each such object, have them count
the number of edges, faces, and vertices and enter those numbers in their table. These
new objects need not be regular, and make sure the students know that they are welcome
to use struts of different lengths and colors.

If the students lack imagination, here are some things they can build. Tetrahedrons
(V = 4, E = 6, F = 4) and octahedrons (V = 6, E = 12, F = 8). Regular tetra-
hedrons and octahedrons cannot be built without the green struts, but irregular ones,
where the edges are different colors and lengths can be made.

Figure 2: Soccer Ball

Other examples include pyramids or other “cone-like” figures with flat bases whose
vertices are connected to the tip of the cone with struts. More complex examples
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include the “soccer ball” which is technically called a truncated icosahedron (see Fig-
ure 2, which can be built with blue and yellow struts that are closest in length to the blue
ones), or even a copy of the Zome ball itself (this requires short and medium-length
blue struts only). The truncated icosahedron counts are (V = 60, E = 90, F = 32)
and the Zome ball’s counts are (V = 60, E = 120, F = 62). A modified version of
the Zome ball where the rectangles are replaced by squares can be built entirely using
only blue struts of a single length.

The features of both the truncated icosahedron and Zome ballcan be counted using the
“counting by cutting” strategy explained at the end of Section 4. The soccer ball has
12 pentagons and20 hexagons, but exactly three edges meet at each vertex. If youcut
it up, you’ll have32 faces,12 × 5 + 20 × 6 = 180 edges and vertices. As before,
all edges are double-counted, making the actual number of edges180/2 = 90, and all
vertices are triple-counted, making the actual number180/3 = 60.

To count the faces of the Zome ball, see Section 8, but once youknow there are12

pentagonal faces,20 triangular faces and30 rectangular faces, you can see that in the
cut-up version of a cardboard Zome ball, there will be12× 5+20× 3+30× 4 = 240

edges and vertices on the pieces after the cuts. The edges aredouble-counted yielding
240/2 = 120 edges of the original Zome ball and since four struts meet at each vertex,
they are quadruple-counted, yielding240/4 = 60 vertices.

Another strategy to use when constructing objects is to takeone that is complete and
modify it by adding features. For example, if you begin with acube and extend one
of the faces so that it looks like an Egyptian pyramid, you effectively eliminate the
original face and replace it by the four faces of the pyramid,thus increasing the number
of faces by4−1 = 3. Only one vertex is added and none are deleted, so the number of
vertices increase by1. Finally, there are4 new edges, so the number of edges increase
by 4. Since the original cube hadV = 8, E = 12, F = 6, the new object will have
V = 8 + 1 = 9, E = 12 + 4 = 16, F = 6 + 3 = 9. Notice that the net change this
makes toV − E + F is 1 − 4 + 3 = 0. Thus if Euler’s theorem was true for the cube,
it will be true for the new object. Not only that, but if it was true forany object with
a rectangular face and that face was modified as we did the faceon the cube, the new
object will satisfy Euler’s theorem if the old one did.

Here’s another idea to think about. What if you make a Zome structure that satisfies
Euler’s theorem, and then you build one that is exactly twiceas big by replacing each
strut in the original by a “strut-ball-strut” (effectivelya strut that’s twice as long)? Well,
the number of faces will remain the same, but if the original structure hadn struts, the
new one will have an additionaln struts andn balls. Thus, bothV andF will be
increased byn, but this will leave the quantityV − E + F unchanged.

6 Duality

If you look at theV, E andF counts of the cube and octahedron, you’ll notice that
they are the same except that the values ofV andF are exchanged. Exactly the same
thing occurs with the dodecahedron-icosahedron pair. Thisdoes not occur by chance:
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these pairs are called “duals” and a dual can be formed from many of the objects we
can make.

To see more clearly what a dual object is, consider the following construction, and
for concreteness, think about it in relation to the cube. Suppose the cube’s vertices
and edges are red. Place blue vertices in the center of each ofthe cube’s faces. Next,
connect the blue vertices that lie on adjacent faces with blue edges and consider the
figure formed. If you look toward the center of the cube through each red edge, you
will see exactly one new blue edge crossing it. Similarly, ifyou look toward the center
of the cube through each red vertex you will see that a face surrounded by blue lines
lies between the red vertex and the center of the cube. Thus, the newly-formed solid
has exactly as many edges as the cube (12), it has the same number of faces as the
cube had vertices (8) and the same number of vertices as the cube had faces (6). The
newly-formed object is called an octahedron, and it is called the dual of the cube.

This explains why the numbers work out as they do, but what is also interesting is
that the dual of the octahedron is the cube again. A similar thing occurs with the
dodecahedron-icosahedron pair. The tetrahedron is its owndual. (It is called “self-
dual”, for that reason.)

Another interesting feature of dual structures that is obvious if you consider the con-
struction above is that in the dodecahedron, for example,3 faces meet at each vertex
and5 vertices surround each face. For its dual, the icosahedron,the opposite is true:5
faces meet at each vertex and3 vertices surround each face. For the cube-octahedron
pair, the numbers are3 and4, and for the tetrahedron, which is self-dual, the numbers,
of course must be the same:3 and3.

Have the students look for other dual structures. What wouldbe the dual of an Egyptian
pyramid, the soccer ball, or the Zome ball?

7 Objects with Holes

Figure 3: Doughnut

It is possible to construct objects with holes using Zome, and a more general version of
Euler’s theorem can be obtained. For example, if we construct a doughnut-like object
(something like what is illustrated in Figure 3 which hasV = 16, E = 32, F = 16),
then we will find thatV − E + F = 0. This will be true for any doughnut-like, or
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one-holed object. If an object has two holes, you will find that V − E + F = −2 and
each additional hole subtracts2 more from the Euler characteristic. In fact, the number
of holes in a very complex object can be counted by finding the Euler characteristic
for that object and from that deriving the number of holes. For us humans, it’s pretty
easy just to count the holes, but a computer trying to do the same for a mathematical
description of the model would be hard-pressed to “see” the holes and would find
it far easier just to calculate the Euler characteristic. Ifit found, for example, that
V − E + F = −22, that would mean that the object had12 holes.

It is not hard to do, but it takes a while to construct Zome objects with holes, so experi-
menting with such objects is probably only reasonable to do with students who already
know about the simple version of Euler’s theorem and who havesome previous expe-
rience with the Zome system.

8 The Zome Ball

Figure 4: The Zome Ball

Look carefully at a Zome ball. (It is better to look at a physical ball, but an image of
one appears in Figure 4. It is highly symmetric, and has holesthat will accept struts
of three shapes: rectangles with an aspect ratio of roughly1 : 1.618 (which happens
to be the golden ratio), equilateral triangles and regular pentagons. Every pentagonal
hole looks the same: it is surrounded by 5 rectangular holes and 5 triangular holes. The
same can be said of every hole: the shapes and orientations ofthe neighboring holes
are the same for every hole in the ball.

Another way to convince yourself that all the holes of a certain shape are basically
identical is to place a Zome ball on a table balanced on a hole of a particular shape (say
a rectangle). Now take another Zome ball and place it onany of its rectangular holes
(or hole of the same shape as the first ball). If you rotate the second ball so that the
rectangles on top have the same orientation, you will find that every hole matches in
shape and orientation in the two balls.

There are 12 pentagon-shaped holes and if you imagine that the pentagons were all left
in their planes but expanded until their edges touched the nearest pentagon edges, the
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resulting figure would be a dodecahedron (a regular 12-sidedpolyhedron as illustrated
in Figure 1).

If you think about this pentagon expansion, every pair of adjacent pentagons would
close over a rectangular hole, so there are the same number ofrectangular holes as
there are edges in a dodecahedron; namely, 30.

Finally, again visualizing the expansion of the pentagonalholes, each triangle on the
Zome ball will be covered by a vertex of the final dodecahedron, so there are the same
number of triangles as there are vertices of a dodecahedron;namely, 20.

A dual argument can be made: instead of expanding the pentagons until their edges
merge, expand the triangles in the same way, and the resulting figure will be a regu-
lar icosahedron – a polyhedron with 20 identical triangluarsides. Each vertex of the
resulting icosahedron (of which there are 12) corresponds to a pentagonal hole in the
Zome ball and each edge of the icosahedron (of which there are30) corresponds to one
of the rectangular holes in the Zome ball.

Luckily, we obtain the same counts using both approaches: 12pentagonal holes, 20
triangular holes and 30 rectangular holes for a total of12 + 20 + 30 = 62 holes.

9 Appendix

Here are some examples of what the students might include in their tables. The “n-
Cylinder” is a sort of cylinder made by extruding ann-sided polygon so that it has two
faces made of that polygon plusn rectangles connecting the corresponding sides. The
n-Pyramid is a sort of cone with ann-sided polygonal base and all the base vertices
are connected to a vertex that forms the tip of the cone. An Egyptian pyramid is made
by applying this process to a square.

Object Vertices (V ) Edges (E) Faces (F ) V − E + F

Cube 8 12 6 2

Octahedron 6 12 8 2

Tetrahedron 4 6 4 2

Egyptian Pyramid 5 8 5 2

Dodecahedron 20 30 12 2

Icosahedron 12 30 20 2

n-Cylinder 2n 3n n + 2 2

n-Pyramid n + 1 2n n + 1 2

Truncated Icosahedron 60 90 32 2

Zome Ball 60 120 62 2
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Zome Patterns Worksheet

Directions:
Important: When you finish with this exercise, please take any structures you have
built completely apart and sort the pieces into the appropriate containers.

As a warm-up, use zome parts to build each of the following structures: a cube, an
icosahedron and a dodecahedron. For each of these structures, you will need only blue
struts, all having the same length. The struts are tough, butit is possible to break them.
Push them straight into and pull them straight out of the Zomeballs to make and break
connections. The figure below shows models of the three structures you are trying to
build.

For each of the objects, count the number of vertices (Zome balls), edges (Zome struts)
and faces (flat regions surrounded by balls and struts). We will use V , E andF to
indicate the number of vertices, edges and faces, respectively of our structures. Try to
figure out different ways to count them by dividing them into classes, or by whatever
other means you can think of. These structures are relatively easy to count, but other
examples will be more complex.

Whenever you build a structure and countV, E andF , enter that information into the
table at the end of this worksheet.

Today we are interested in objects that do not contain “holes” in the sense that if you
blow up a very flexible balloon inside the object, it would touch all the struts and
balls without having to touch itself. (For example, a doughnut-shaped figure would not
count, since if you inflated a balloon inside, two sections ofthe balloon’s outer surface
would eventually come in contact.) Another way to think of your objects is that if
they were completely flexible, they could be distorted, without cutting, to the form of a
sphere. A mathematician would say that they are topologically equivalent to a sphere.

Now build some more models that are “topologically equivalent to a sphere”. Do not
neglect simple models like tetrahedrons and octahedrons (which will require different-
length and different-color struts). Other ideas include “cones”, Egyptian pyramids,
and so on. One easy way to make new models is to add faces to an existing model.
For example, imagine adding a sort of Egyptian pyramid on topof a cube to make
something that looks a bit like a house with a roof. For each ofthe models that you
build, carefully countV , E andF , and record your results in the table at the end of the
worksheet.
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More challenging objects (both to build and to count theV , E and F features for
include the “soccer ball” as illustrated below, and you can even make a large model of
the Zome ball itself. The soccer ball will require only blue and yellow struts where all
the blue struts are the same as are all the yellow ones, and theyellow strut size is as
close as possible to the blue strut size. A model of the Zome ball itself will require two
different lengths of blue struts. Again, count and record the V , E andF data for each
structure.

After you have collected your data, try to find patterns in it.Hint: There is a simple
algebraic expression relatingV , E andF . Once you find the expression, try to come
up with reasons why it might be true.

An advanced topic you can experiment with is to see if you can do a similar analysis
of objects with a hole in them (objects that are topologically equivalent to a doughnut,
or torus).

The cube and octahedron are said to be dual. So are the dodecahedron and icosahedron.
The tetrahedron is said to be self-dual. What might this mean? Hint: Look at the values
for V , E andF for these pairs of objects. Do other objects have duals in this sense?
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Object Vertices (V ) Edges (E) Faces (F )

11


