Huffman Encoding

Tom Davis
tomrdavis@earthlink.net
http://www.geometer.org/mathcircles
November 12, 2010

1 An Easy Example: Telephone Numbers

Let’s start with a familiar example: telephone numbersallyeto make a phone call,
you would like to have to dial as few numbers as possible. Nelephone numbers
in the United States are seven digits long, partly becausnsdigits is about the most
you can expect the average human to remember between théeitoeks it up and

the time he dials.

Of course, even if all possible 7-digit numbers were usathlat's only 107, or ten
million numbers, and there are far more telephones thanrthe United States. So
what is done is that the country is divided into regions, aacheregion is assigned a
3-digit area code. If you are calling a number within yourioeg you don’t need to
include the area code, but if you want to call outside youraregyou need 10 digits:
the area code plus the 7-digit number identifying the phosgle the region.

But there’'s a problem: how does the phone company computaw khat you are
dialing a 7-digit or a 10-digit number? After all, you mighe blialing 10 digits, but
pause for a moment after dialing 7 of them. The answer is that-digit numbers
nor 3-digit area codes begin with the digits 0 or 1. If you wamtlial outside your
area code, you need to dial a 1 first, then the area code, teehdigit local phone
number. (This may be handled differently in different parfishe country.) Since no
area codes or local numbers begin with a 1, then if the firstbmrngou dial is 1, the
phone company computer knows that the next three digitsh@@itea code and the
following 7 are local.

(Of course since we cannot have a 0 or a 1 as the initial digitlotal phone number,
there are only x 10% = 8, 000, 000 different possible local numbers insteadlof =
10,000, 000 of them.)

It used to be that the local 7-digit numbers had a "prefix” adedigit number (as in the
Marvelettes’ song, “Beechwood 4-5789"). The first two letteould be remembered
as two letters on the phone where the digit 2 wid3C', digit 3 wasDEF, and so on.
Thus “Beechwood 4-5789” was 234-5789. Since neither therQlrwad any letters
assigned to it, it was impossible to have a 0 or a 1 as the fisst@wnd digit of prefix.
(I'just know the system where | grew up, in Denver, and theffpes” were effectively
three digits. The first two were letters, like “FR”, for “Fremt”, but it wasalways
“FR-7"; there was never an “FR-6" or “FR-8". Maybe it was difent in other places.)

Because of that, it was initially easy to determine whethefrfirst three digits were an
area code or not, since all the area codes had a 0 or a 1 asdbeirdsdigit. So as
soon as the telephone company’s computer saw you dial “213he 1 in the second
position made it clear that you were dialing an area codeitanched out that it was in
the Los Angeles aréaThis restriction has been dropped to make more local nusnber
so the leading 1 is now required.

There are even more problems if you want to dial internatligndifferent countries
have different systems (perhaps not 7-digit numbers na eoeles, but something
else). The solution is that if you begin by dialing 011, thetriaformation to dial
is a country code, and after that, the US phone company, giko®ws that the call
is international, can interpret the next digits as a couatrye, and then just send the
following numbers to that country’s local phone system fao ifigure out.

Notice how this system will tend to reduce the total numbedigfts that are dialed:
most of your calls are to friends or associates in the locsdh,as0 most of your calls
require only 7 digits. Less likely is for the calls to be in #mer area code, in which
case you need to dial 11 digits (the leading 1, then threésdifiarea code, plus seven
digits of local number). In what is usually the rarest castgrinational calls, you need
to dial enough numbers to get out of the US system, and thehaeaito dial whatever
is necessary to connect to the foreign telephone.

In fact, this system can even be simplified in some cases. d&epyou work for a
company with fewer than, say, 900 employees. For some jbissljikely that most of
your calls will be to others within the company, so you car thieee digits and that's
enough to connect you to the correct person within the comp@&i course, if you
want an outside line, you dial, say, a 0, followed by whatexar would do to make
the outside call, be it local, in another area code, or irtéonal. The reason for the
limit of 900 is that none of the internal extensions can begth 0, since a leading 0
indicates an outside line. If the company has fewer than @d@floyees, then a 4-digit
extension will handle all of them, et cetera.

Let’s consider the situation where all we're concerned vgtballs within the United
States. Suppose that 90% of the numbers you call are withinai@a code and 10%
are outside it. That means that 90% of the time you’ll haveabddigits and 10% of
the time, 11 digits. On average, the number of digits you reelial is:

090 x 7+0.10x11 =74

If you just required the area code every time, even for loadiscthen you wouldn’t

need the leading 1, so every call would require 10 digits. i call local numbers
more often, you’ll save on the number of digits required, arithis example, you save
2.6 digits per call, on average.

1with the old rotary-dial phones, it was faster to dial shormtembers, so area codes for the more popu-
lated areas had easier-to-dial area codes. For example; R&® York, 312 = Chicago, 313 = Detroit.

2 Transmitting M essages

Now let’s go to a much simpler system: you wish to send messager a communi-
cation line, and you want to transmit the messages as fastssshte. Let's assume
that you can only send your messages as a series of 1's andtih(is exactly the

case for almost all digital transmissions these days). 4lsifl or 1 is called a “bit” of

information.

We will be very flexible at first in what we mean by a “messageipose, for example,
you have an elevator, and there is a light that goes on if teea#dr is there. Every
second, the elevator needs to send one of two messages: Heasi br “I am not
there”. We can imagine that the elevator sends a O if it isimertet and a 1 if it is there.
Just by looking at this single bit of information, you carl tethether to turn on the light
or not. In this case, this is about the best you can do: evepgage is exactly one bit
in length.

But let’s suppose there are more than two messages: the twe gtius one more that
means the elevator is locked on a floor and another that me@snsroken. Now there
are four possible messages, so one bit of information isifficient, but we can easily
encode the messages with two bits of information:

| am not there| 00
| am there 01
Locked 10
Broken 11

To interpret the situation, you need to look at two bits atreetiand every message will
be two bits long.

In a situation like this, however, the locked and brokenaitins are very rare, and
if the building has a lot of floors, then the message “I am netehwill be far more
common than the message “l am there”. Just to have some nsnhdtér assume that
90% of the time the message is “I am not there”, 8% of the tingenttessage is “I
am there”, and 1% of the time each of the other two messageseate Consider the
following encodings for the messages:

| am not there| O

| am there 10
Locked 110
Broken 111

It may seem strange to have different-length encodingshfembessages, but notice
first that this is a bit like the telephone numbers: the mostrmon message is sent
with the least number of bits, and there is never a questiontdhe message.

Can see why there is never any confusion about the messageanstver is in this
footnote.

2|f you see a 0 first, then the message is over and the elevatot ikere. If you see a 1, you have to wait
for the next bit. If that next bit is a 0, you know the message ywu're done, but if not, you need to look at
the third bit. Now, in any case, the message is over and yosteanlooking for the next message.

With this encoding mechanism, what is the length of the ay@naessage in bits? Well,
itis:
090 x1+008x2+0.01l x34+0.1x3=1.12

With this encoding, on average, you save 0.88 bits per messag

3 A Real World Example

The example above with the elevator is fairly contrived, éxactly the same idea can
be used for messages that are more like the ones you typsstlg. Let's look at
messages that are just typed with normal text in English.

If you look at lots of English text, you will note that diffemeletters have different
probabilities of occurring. The letter “e” is by far the mastmmon, and letters like
“X", “j” and “z" are very rare. There are a lot of standard edews for letters and
probably the most common one today is the ASCII encoding vhagsigns 8 bits to
each letter. This allows f@® = 256 letters, and that is plenty for the 26 upper-case and
26 lower-case letters, all the punctuation, the space cteardabs, control characters
brackets, braces, and other miscellaneous characters.

The ASCII encoding is very simple to work with: every chunk8dbits represents the
next character in a string, butin terms of packing Engligh feis very inefficient since
the actual characters have wildly different frequenciesfatt, the space character is
the most common, followed by “e”, and so on. It isn’t hard t@emne large chunks
of English text to get a rough idea of the relative frequencitthe letters, and once
we have those, we can find an encoding of the character sé$ flaatmore efficient in
terms of the time it would take to transmit typical messagebe space that it would
take to store them on a computer.

One question we would like to answer here is that given thefsetlative frequencies
of the letters, how do we find the most space-efficient engpftinthem?

Rather than start with the full ASCII set that contains a6 Zbharacters, as usual, it is
best to begin with the simplest possible situations, anckwerfrom there. Let’s just
look at tiny alphabets and see what we can do.

Note: In certain situations, we can do even more, and we allll about those later,
but for now, we’ll assume that a bit sequence must be sentafch etter. We'll start

with 2-character alphabets, then 3, and so on. To make tlaimoteasier, suppose
there arex characters and we call thefy, Co, . . ., C,,, whereC is the most common
character and they are listed in order of frequency('sas the least common. Let's
write p; for the probability that”; occurs,p, for the probability thatC; occurs, and

so on. If there are characters, then:

prtpet+-+pn=1,

with
PL=P2 2 2 Pn-

If we useb; bits to represent the first character,to represent the second and so on,
then the average number of bits required to send a singlacteais:

plbl +P2b2 + - +pnbn

3.1 A 2-Character Alphabet

If there are only two characters, we can assign 0 to one anthk tother. The average
number of bits sent for each charactepi$l) + p2(1) = p1 + p2 = 1.

3.2 A 3-Character Alphabet

We're going to need at least 2 bits for some of the charactece svith just 0 and 1,
only two characters can be distinguished. The easiest waydvgdmply be to assign
two bits to each, like 00, 10 and 11. The combination 01 wowelgen occur. But this
is clearly wasteful: once you see a leading 0, you know the bi¢xas to be zero in
this encoding, so why bother to send it? A better encodingdavbe 0, 10 and 11. (Or
equivalently, 1, 00 and 01 — there’s nothing that makes a teb#tan a 1. both take
the same amount of space and the same amount of time to tt&asmi

Since we're trying to minimize the average number of bits,sem should assign the
0 code to the most common letter, and the 10 and 11 codes tdhibetwo. It doesn’t
matter how the last two are assigned; they both will requin@<

Can you prove that this is the most efficient encoding? (hwork out the average bit
count per letter under the different scenarios, keepingindrthatp; > ps > p3.) The
answer appears in Section 6.1

3.3 A 4-Character Alphabet

Again, the easiest encoding would be to use all the 2-biepatto cover the four
possibilities: 00, 01, 10 and 11, although in the elevat@anasle, we've already seen
that this may be a bad idea.

At this point, things begin to get tricky. To see why, suppaBdour characters are
equally likely: that each has probability 25% of occurringdther wordsp; = ps =
p3 = ps = 0.25). Then the assignment to the four possibilities works bsste the
average message size is 2 bits, and if we used the encodindjd figgr the elevator: 0,
10,110 and 111, we would do worse. The average number of bitfvbe:

025 x1+025x2+0.25 x3+0.25 x 3 =2.25,

which is, on average, 0.25 bits more per character, on agerag

3Notice that this may not always be true: using Morse code axample, it takes about three times as
long to send a “dash” as a “dot”.

When should you use each kind of encoding? Think about thigfahile before
reading on.

The answer is that if you add the two lowest probabilitiegtbgr and obtain a number
that is larger than the highest probability, then the besbdimg is to use 2 bits for
each; otherwise, assign them as 0, 10, 110, 111 for the Highaisability to lowest
probability character.

3.4 Alphabets With More Than 4 Characters

With 5 or 6 characters in the alphabet, it’s still probablggible to work out the optimal
binary encodings by brute force, but in the real world whdphabets are generally
much larger, this method becomes far too tedious.

As an example, try to find as good an encoding as you can foroll@ving set of
characters with the given probabilities of occurrence. threowords, what would be
an optimal encoding for the characters “A’ through “H” bel@amd what would be the
average number of bits per character in that encoding? ®iece are 8 characters, we
could clearly just assign to each one of the eight 3-bit eimgsd 000, 001, 010, 011,
100, 101, 110, 111, and we would have an average of 3 bits per character. How much
better than that can you do?

i

0.28
0.27
0.23
0.09
0.04
0.04
0.03
0.02

Try to work on this for a while and see how well you can do. Thsevear appears in
Section 6.2

Q

IO Mmool m >

3.5 A Practical Example

Assuming you know how to construct an optimal encoding fgrdistribution of char-
acters (which we will find later), how could we use this?

Suppose you have huge documents with millions or even hdsdremillions of char-

acters. You would like to compress them so as to take up &s ditbrage space as
possible. One approach would be, for each document, to ha&edmputer make a
pass through and count the number of instances of each ¢daracluding spaces,
punctuation, et cetera. Then it can generate, using rulesilvéiscover later, an opti-

mal Huffman encoding for that character distribution. Hinaise the first few hundred
characters of the encoded document to list the particulesding for that document,

and this would be followed by the Huffman-encoding of theyoral text.

Doing this for each document has the advantage that if therdeats have wildly-

different distributions, each will be compressed optimdfor example, texts in Italian
will have a lot more vowels than texts in English and woulddhaelifferent encoding.
If a document consisted of mostly mathematical tables, siralbthe characters might
be digits, so a Huffman encoding that gave digits priorityndoallow the document to
be compressed far more efficiently, et cetera.

4 Huffman Encoding

It should be clear that whatever the best solution is, it dugtassign shorter codes

to the more common characters and longer codes to the raaeaathrs. This is true
since if there is a pair of charactef§ andCy where(C is the most common but has

a longer encoding tha@’, then you could just swap the encodings and have a more
efficient final result.

We can think of the problem as a series of investments of Aitee longest strings
of bits should go with the least common characters, so piekttlo least-common
characters and spend one bit on each (a 0 and a 1) to tell tharh afhis will be
the final bit in the code for each, with some unknown numberitsf fireceding them
which are the same. But now every time you add one bit to tretgating part, the cost,
in terms of number of total bits spent, will be the sum of thetsdor the individual
characters, since that extra bit has to be added to both catiés sentence is a little
vague, but it provides an insight into how an optimal encgdéderived and to why it
is the best.

As an aid to calculation, notice that it is not necessary ® the true probabilities
when you are trying to optimize an encoding; any multiplelbfree probabilities will
yield the same minimum. In other words, suppose there arelfimeacters and you've
done a count of the number of times each character occursandome up with the
following counts:

A | 123
B | 82
C |76
D | 40
E |11

To find the probabilities you need to add all the charactentou 23 + 82 + 76 +

40 + 11 = 332 and then divide each of the numbers above3B¥, so for example,
the probability of obtaining an “A”i923/332 = .3704 ... — a bit more thar87% of

the time. The same can be done for each of the numbers abdvegtine that they all
will be equal to332 times the actual probability, so if you just us23, 82, and so on,

all your sums will be exactly thg32 times as large as what you'd get using the true
probabilities.

So let’s try to figure out logically an optimal encoding foreticharacter set above.

There are 5 characters, so 2 hits will not be sufficient; atleae of them will require
3 bits of data (and perhaps more). We can'’t allow four of therhave 2 bits and the
other 3 bits, since the 3-bit encoding will have to start ta@me way as one of the 2-bit
encodings and there will be no way to tell whether the 2-kdrabter ended, or whether
we need to wait one more bit for the 3-bit character. So at kasof the characters
will require at least 3 bits. As we stated above, the lett&sdnd “E” should be the
ones chosen to have the longest string of bits in their catesje can arbitrarily say
that D has a code of . .. 20 and E a code of . . . 21 where the earlier bits indicated
by thez’s (we don’t know how many yet) are the same.

But each time we add a bit to replace ttis above for the D and E characters, we add
one bit to the representation 6f characters (both th¢0 D’s and thell E’s). In a
sense, we can treat the combination of D and E as a singleatbargith weight51
together with the other three letters, and we'd have a chattlooks something like
this:

A 123
B 82
c |76
(DE) [40 + 11 = 51

Now the least common “letters” are C and (DE), where (DE) &sd¢bmbination of D
and E. We should use a bit to distinguish between them, andotanothe following
chart:

(C(DE)) | 76 + 51 = 127
A 123
B 82

The C combined with (DE) now is the most-likely “letter”, damoves to the top of the
chart. The least likely of those left are A and B, which, whembined, yield:

(AB) 123+ 82 = 205
(C(DE)) | 76 + 51 = 127

Finally, one more bit needs to be added to distinguish betwee two combinations
above, and it could be indicated as follows, continuing thiégun above:

[((AB)(C(DE))) | 205+ 127 = 332 |

Each pair of parentheses contains two “subcodes” each atwikieither a letter of
a grouped pair of similar items. We can unwrap the parenthaséollows. Assign a
leading O to one of the subcodes and a leading 1 to the othen ddntinue recursively.

Thus the first bit tells us whether to go with (AB) or (C(DE)bararily use 0 for (AB)
and 1 for (C(DE)). If we see a 0, we only need one bit to distisigbetween A and B,
so 00 means A and 01 means B. If we see a leading 1. then theinelisous whether
we have a C or a (DE), et cetera, so the codes for the last thoeddsbe 10 for C, 110
for D and 111 for E:

| Character| Frequency| Code |

A 123 00
B 82 01
C 76 10
D 40 110
E 11 111

This optimal encoding requires only 3 bits for the least-omm character, but there are
situations with only 5 characters that 4 bits would be resglifor an optimal encoding.
Here’s an example:

| Character| Frequency| Code |

A 16 0

B 8 10

C 4 110
D 2 1110
E 1 1111

Follow the logic we used for the previous example to see thatstructure for the
encoding would be (A(B(C(DE)))).

5 TreeFormulation

Another way to visualize the Huffman encoding is as a treewdffollow the same
procedure as above for the following distribution of lefter

15
12

@l m o0 m >
o

we obtain the encoding structure ((AB)((CD)(E(FG)))). Jloan be displayed as the
binary tree below, where the letters are the final nodes, tinebers in boxes are the
weights, both of the final and internal nodes and the 0’s asidldove the lines indicate
the encoding. To find the code for any particular letter, fungt the unique path to the
letter from the root (numbered 44) and read off the numbetheronnecting edges.

For example, to get to D from the root we follow three edgesllad 1, 0 and 1, so the
Huffman encoding for D in this example is 101. Here is the clatgencoding:

A | 15| 00
B|12 |01
C|6 | 100
D|5 | 101
E |4 | 110
F |2 | 1110
G|1 | 1111

6 Solutions

6.1 Optimal 3-character encoding

We want to show that ib; > po > ps, then assigning the code 0€4 and the codes
10 and 11 ta”; andC’s (in either order) generates the most efficient encodingaiam
that:

p1(1) +p2(2) + p3(2)

is the smallest possible value. In other words, if we assigits2to C, the results will
always be worse. Here are the average bit lengths corresgptadthe other ways we
could make that assignment:

p2(1) +p1(2
p3(1) +p1(2

+ +
k=R~
N W
oS
~—

10

We just have to show that:

p1(1) +p2(2) +p3(2) > p2(1) 4+ p1(2) + p3(2)

and
p1(1) 4+ p2(2) + p3(2) > p3(1) + p1(2) + p2(2).

Both are similar; let’s just do the first. The following inegjities are all equivalent; we
just add or subtract the same thing from both sides to mowe &oe to the next:

p1(1) +p2(2) +p3(2) > p2(l) +p1(2) + p3(2)
p1(1) +p2(2) > pa(1) +pi(2)
p2(2-1) > p1(2-1)
p2 = p1

Since the last line is true and they're all equivalent, weskiewn the first inequality to
be true. The second is similar.

6.2 Optimal 8-character encoding

Here is one optimal encoding:

|i [Ci|pi | encoding| b; |

1A |028]00 2
2| B 02701 2
3| C 02310 2
4| D |0.09 | 110 3
5| E | 0.04 | 11100 5
6| F |0.04]| 11101 5
7| G |0.03| 11110 5
8| H |0.02]| 11111 5

and the average number of bits per character is:
p1-bi+ -+ ps-bs
=0.28-24027-24---40.02-5=2.48.

Of course any of the encodings with the same number of bitlsldmuswapped around.
You just need to find one where A, B and C are encoded in 2 bite,3hits, and E, F,
G and H in 5 bits.

11

