
Huffman Encoding

Tom Davis
tomrdavis@earthlink.net

http://www.geometer.org/mathcircles
November 12, 2010

1 An Easy Example: Telephone Numbers

Let’s start with a familiar example: telephone numbers. Ideally, to make a phone call,
you would like to have to dial as few numbers as possible. Mosttelephone numbers
in the United States are seven digits long, partly because seven digits is about the most
you can expect the average human to remember between the timehe looks it up and
the time he dials.

Of course, even if all possible 7-digit numbers were usable,that’s only107, or ten
million numbers, and there are far more telephones than thatin the United States. So
what is done is that the country is divided into regions, and each region is assigned a
3-digit area code. If you are calling a number within your region, you don’t need to
include the area code, but if you want to call outside your region, you need 10 digits:
the area code plus the 7-digit number identifying the phone inside the region.

But there’s a problem: how does the phone company computer know that you are
dialing a 7-digit or a 10-digit number? After all, you might be dialing 10 digits, but
pause for a moment after dialing 7 of them. The answer is that no 7-digit numbers
nor 3-digit area codes begin with the digits 0 or 1. If you wantto dial outside your
area code, you need to dial a 1 first, then the area code, then the 7-digit local phone
number. (This may be handled differently in different partsof the country.) Since no
area codes or local numbers begin with a 1, then if the first number you dial is 1, the
phone company computer knows that the next three digits are the area code and the
following 7 are local.

(Of course since we cannot have a 0 or a 1 as the initial digit ofa local phone number,
there are only8× 106 = 8, 000, 000 different possible local numbers instead of107 =
10, 000, 000 of them.)

It used to be that the local 7-digit numbers had a ”prefix” and a4-digit number (as in the
Marvelettes’ song, “Beechwood 4-5789”). The first two letters could be remembered
as two letters on the phone where the digit 2 wasABC, digit 3 wasDEF , and so on.
Thus “Beechwood 4-5789” was 234-5789. Since neither the 0 nor 1 had any letters
assigned to it, it was impossible to have a 0 or a 1 as the first orsecond digit of prefix.
(I just know the system where I grew up, in Denver, and the “prefixes” were effectively
three digits. The first two were letters, like “FR”, for “Fremont”, but it wasalways
“FR-7”; there was never an “FR-6” or “FR-8”. Maybe it was different in other places.)

1



Because of that, it was initially easy to determine whether the first three digits were an
area code or not, since all the area codes had a 0 or a 1 as their second digit. So as
soon as the telephone company’s computer saw you dial “213. .. ”, the 1 in the second
position made it clear that you were dialing an area code, andit turned out that it was in
the Los Angeles area1. This restriction has been dropped to make more local numbers,
so the leading 1 is now required.

There are even more problems if you want to dial internationally: different countries
have different systems (perhaps not 7-digit numbers nor area codes, but something
else). The solution is that if you begin by dialing 011, the next information to dial
is a country code, and after that, the US phone company, sinceit knows that the call
is international, can interpret the next digits as a countrycode, and then just send the
following numbers to that country’s local phone system for it to figure out.

Notice how this system will tend to reduce the total number ofdigits that are dialed:
most of your calls are to friends or associates in the local area, so most of your calls
require only 7 digits. Less likely is for the calls to be in another area code, in which
case you need to dial 11 digits (the leading 1, then three digits of area code, plus seven
digits of local number). In what is usually the rarest case, international calls, you need
to dial enough numbers to get out of the US system, and then youhave to dial whatever
is necessary to connect to the foreign telephone.

In fact, this system can even be simplified in some cases. Suppose you work for a
company with fewer than, say, 900 employees. For some jobs, it is likely that most of
your calls will be to others within the company, so you can dial three digits and that’s
enough to connect you to the correct person within the company. Of course, if you
want an outside line, you dial, say, a 0, followed by whateveryou would do to make
the outside call, be it local, in another area code, or international. The reason for the
limit of 900 is that none of the internal extensions can beginwith 0, since a leading 0
indicates an outside line. If the company has fewer than 9000employees, then a 4-digit
extension will handle all of them, et cetera.

Let’s consider the situation where all we’re concerned withis calls within the United
States. Suppose that 90% of the numbers you call are within your area code and 10%
are outside it. That means that 90% of the time you’ll have to dial 7 digits and 10% of
the time, 11 digits. On average, the number of digits you needto dial is:

0.90 × 7 + 0.10 × 11 = 7.4

If you just required the area code every time, even for local calls, then you wouldn’t
need the leading 1, so every call would require 10 digits. When you call local numbers
more often, you’ll save on the number of digits required, andin this example, you save
2.6 digits per call, on average.

1With the old rotary-dial phones, it was faster to dial shorter numbers, so area codes for the more popu-
lated areas had easier-to-dial area codes. For example, 212= New York, 312 = Chicago, 313 = Detroit.

2



2 Transmitting Messages

Now let’s go to a much simpler system: you wish to send messages over a communi-
cation line, and you want to transmit the messages as fast as possible. Let’s assume
that you can only send your messages as a series of 1’s and 0’s (which is exactly the
case for almost all digital transmissions these days). A single 0 or 1 is called a “bit” of
information.

We will be very flexible at first in what we mean by a “message”. Suppose, for example,
you have an elevator, and there is a light that goes on if the elevator is there. Every
second, the elevator needs to send one of two messages: “I am there” or “I am not
there”. We can imagine that the elevator sends a 0 if it is not there and a 1 if it is there.
Just by looking at this single bit of information, you can tell whether to turn on the light
or not. In this case, this is about the best you can do: every message is exactly one bit
in length.

But let’s suppose there are more than two messages: the two above, plus one more that
means the elevator is locked on a floor and another that means it is broken. Now there
are four possible messages, so one bit of information isn’t sufficient, but we can easily
encode the messages with two bits of information:

I am not there 00
I am there 01
Locked 10
Broken 11

To interpret the situation, you need to look at two bits at a time, and every message will
be two bits long.

In a situation like this, however, the locked and broken situations are very rare, and
if the building has a lot of floors, then the message “I am not there” will be far more
common than the message “I am there”. Just to have some numbers, let’s assume that
90% of the time the message is “I am not there”, 8% of the time the message is “I
am there”, and 1% of the time each of the other two messages aresent. Consider the
following encodings for the messages:

I am not there 0
I am there 10
Locked 110
Broken 111

It may seem strange to have different-length encodings for the messages, but notice
first that this is a bit like the telephone numbers: the most common message is sent
with the least number of bits, and there is never a question about the message.

Can see why there is never any confusion about the message? The answer is in this
footnote2.

2If you see a 0 first, then the message is over and the elevator isnot there. If you see a 1, you have to wait
for the next bit. If that next bit is a 0, you know the message and you’re done, but if not, you need to look at
the third bit. Now, in any case, the message is over and you canstart looking for the next message.

3



With this encoding mechanism, what is the length of the average message in bits? Well,
it is:

0.90 × 1 + 0.08 × 2 + 0.01 × 3 + 0.1 × 3 = 1.12

With this encoding, on average, you save 0.88 bits per message.

3 A Real World Example

The example above with the elevator is fairly contrived, butexactly the same idea can
be used for messages that are more like the ones you typicallysend. Let’s look at
messages that are just typed with normal text in English.

If you look at lots of English text, you will note that different letters have different
probabilities of occurring. The letter “e” is by far the mostcommon, and letters like
“x”, “j” and “z” are very rare. There are a lot of standard encodings for letters and
probably the most common one today is the ASCII encoding which assigns 8 bits to
each letter. This allows for28 = 256 letters, and that is plenty for the 26 upper-case and
26 lower-case letters, all the punctuation, the space character, tabs, control characters
brackets, braces, and other miscellaneous characters.

The ASCII encoding is very simple to work with: every chunk of8 bits represents the
next character in a string, but in terms of packing English text, it is very inefficient since
the actual characters have wildly different frequencies. In fact, the space character is
the most common, followed by “e”, and so on. It isn’t hard to examine large chunks
of English text to get a rough idea of the relative frequencies of the letters, and once
we have those, we can find an encoding of the character set thatis far more efficient in
terms of the time it would take to transmit typical messages or the space that it would
take to store them on a computer.

One question we would like to answer here is that given the setof relative frequencies
of the letters, how do we find the most space-efficient encoding for them?

Rather than start with the full ASCII set that contains all 256 characters, as usual, it is
best to begin with the simplest possible situations, and work up from there. Let’s just
look at tiny alphabets and see what we can do.

Note: In certain situations, we can do even more, and we will talk about those later,
but for now, we’ll assume that a bit sequence must be sent for each letter. We’ll start
with 2-character alphabets, then 3, and so on. To make the notation easier, suppose
there aren characters and we call themC1, C2, . . . , Cn, whereC1 is the most common
character and they are listed in order of frequency, soCn is the least common. Let’s
write p1 for the probability thatC1 occurs,p2 for the probability thatC2 occurs, and
so on. If there aren characters, then:

p1 + p2 + · · · + pn = 1,

with
p1 ≥ p2 ≥ · · · ≥ pn.

4



If we useb1 bits to represent the first character,b2 to represent the second and so on,
then the average number of bits required to send a single character is:

p1b1 + p2b2 + · · · + pnbn.

3.1 A 2-Character Alphabet

If there are only two characters, we can assign 0 to one and 1 tothe other. The average
number of bits sent for each character isp1(1) + p2(1) = p1 + p2 = 1.

3.2 A 3-Character Alphabet

We’re going to need at least 2 bits for some of the characters since with just 0 and 1,
only two characters can be distinguished. The easiest way would simply be to assign
two bits to each, like 00, 10 and 11. The combination 01 would never occur. But this
is clearly wasteful: once you see a leading 0, you know the next bit has to be zero in
this encoding, so why bother to send it? A better encoding would be 0, 10 and 11. (Or
equivalently, 1, 00 and 01 — there’s nothing that makes a 0 better than a 1: both take
the same amount of space and the same amount of time to transmit3).

Since we’re trying to minimize the average number of bits sent, we should assign the
0 code to the most common letter, and the 10 and 11 codes to the other two. It doesn’t
matter how the last two are assigned; they both will require 2bits.

Can you prove that this is the most efficient encoding? (Hint,work out the average bit
count per letter under the different scenarios, keeping in mind thatp1 ≥ p2 ≥ p3.) The
answer appears in Section 6.1

3.3 A 4-Character Alphabet

Again, the easiest encoding would be to use all the 2-bit patterns to cover the four
possibilities: 00, 01, 10 and 11, although in the elevator example, we’ve already seen
that this may be a bad idea.

At this point, things begin to get tricky. To see why, supposeall four characters are
equally likely: that each has probability 25% of occurring (in other words,p1 = p2 =
p3 = p4 = 0.25). Then the assignment to the four possibilities works best,since the
average message size is 2 bits, and if we used the encodings wedid for the elevator: 0,
10, 110 and 111, we would do worse. The average number of bits would be:

0.25 × 1 + 0.25 × 2 + 0.25 × 3 + 0.25 × 3 = 2.25,

which is, on average, 0.25 bits more per character, on average.

3Notice that this may not always be true: using Morse code as anexample, it takes about three times as
long to send a “dash” as a “dot”.

5



When should you use each kind of encoding? Think about this for a while before
reading on.

The answer is that if you add the two lowest probabilities together and obtain a number
that is larger than the highest probability, then the best encoding is to use 2 bits for
each; otherwise, assign them as 0, 10, 110, 111 for the highest probability to lowest
probability character.

3.4 Alphabets With More Than 4 Characters

With 5 or 6 characters in the alphabet, it’s still probably possible to work out the optimal
binary encodings by brute force, but in the real world where alphabets are generally
much larger, this method becomes far too tedious.

As an example, try to find as good an encoding as you can for the following set of
characters with the given probabilities of occurrence. In other words, what would be
an optimal encoding for the characters “A” through “H” below, and what would be the
average number of bits per character in that encoding? Sincethere are 8 characters, we
could clearly just assign to each one of the eight 3-bit encodings: 000, 001, 010, 011,
100, 101, 110, 111, and we would have an average of 3 bits per character. How much
better than that can you do?

i Ci pi

1 A 0.28
2 B 0.27
3 C 0.23
4 D 0.09
5 E 0.04
6 F 0.04
7 G 0.03
8 H 0.02

Try to work on this for a while and see how well you can do. The answer appears in
Section 6.2

3.5 A Practical Example

Assuming you know how to construct an optimal encoding for any distribution of char-
acters (which we will find later), how could we use this?

Suppose you have huge documents with millions or even hundreds of millions of char-
acters. You would like to compress them so as to take up as little storage space as
possible. One approach would be, for each document, to have the computer make a
pass through and count the number of instances of each character, including spaces,
punctuation, et cetera. Then it can generate, using rules wewill discover later, an opti-
mal Huffman encoding for that character distribution. Finally, use the first few hundred
characters of the encoded document to list the particular encoding for that document,

6



and this would be followed by the Huffman-encoding of the original text.

Doing this for each document has the advantage that if the documents have wildly-
different distributions, each will be compressed optimally. For example, texts in Italian
will have a lot more vowels than texts in English and would need a different encoding.
If a document consisted of mostly mathematical tables, almost all the characters might
be digits, so a Huffman encoding that gave digits priority would allow the document to
be compressed far more efficiently, et cetera.

4 Huffman Encoding

It should be clear that whatever the best solution is, it ought to assign shorter codes
to the more common characters and longer codes to the rarer characters. This is true
since if there is a pair of charactersC1 andC2 whereC1 is the most common but has
a longer encoding thanC2, then you could just swap the encodings and have a more
efficient final result.

We can think of the problem as a series of investments of bits.The longest strings
of bits should go with the least common characters, so pick the two least-common
characters and spend one bit on each (a 0 and a 1) to tell them apart. This will be
the final bit in the code for each, with some unknown number of bits preceding them
which are the same. But now every time you add one bit to that preceding part, the cost,
in terms of number of total bits spent, will be the sum of the costs for the individual
characters, since that extra bit has to be added to both codes. This sentence is a little
vague, but it provides an insight into how an optimal encoding is derived and to why it
is the best.

As an aid to calculation, notice that it is not necessary to use the true probabilities
when you are trying to optimize an encoding; any multiple of all the probabilities will
yield the same minimum. In other words, suppose there are fivecharacters and you’ve
done a count of the number of times each character occurs and you come up with the
following counts:

A 123
B 82
C 76
D 40
E 11

To find the probabilities you need to add all the character counts: 123 + 82 + 76 +
40 + 11 = 332 and then divide each of the numbers above by332, so for example,
the probability of obtaining an “A” is123/332 = .3704 . . . — a bit more than37% of
the time. The same can be done for each of the numbers above, but notice that they all
will be equal to332 times the actual probability, so if you just use123, 82, and so on,
all your sums will be exactly the332 times as large as what you’d get using the true
probabilities.

So let’s try to figure out logically an optimal encoding for the character set above.

7



There are 5 characters, so 2 bits will not be sufficient; at least one of them will require
3 bits of data (and perhaps more). We can’t allow four of them to have 2 bits and the
other 3 bits, since the 3-bit encoding will have to start the same way as one of the 2-bit
encodings and there will be no way to tell whether the 2-bit character ended, or whether
we need to wait one more bit for the 3-bit character. So at least two of the characters
will require at least 3 bits. As we stated above, the letters “D” and “E” should be the
ones chosen to have the longest string of bits in their codes,so we can arbitrarily say
that D has a code ofx . . . x0 and E a code ofx . . . x1 where the earlier bits indicated
by thex’s (we don’t know how many yet) are the same.

But each time we add a bit to replace thex’s above for the D and E characters, we add
one bit to the representation of51 characters (both the40 D’s and the11 E’s). In a
sense, we can treat the combination of D and E as a single character with weight51
together with the other three letters, and we’d have a chart that looks something like
this:

A 123
B 82
C 76
(DE) 40 + 11 = 51

Now the least common “letters” are C and (DE), where (DE) is the combination of D
and E. We should use a bit to distinguish between them, and we obtain the following
chart:

(C(DE)) 76 + 51 = 127
A 123
B 82

The C combined with (DE) now is the most-likely “letter”, so it moves to the top of the
chart. The least likely of those left are A and B, which, when combined, yield:

(AB) 123 + 82 = 205
(C(DE)) 76 + 51 = 127

Finally, one more bit needs to be added to distinguish between the two combinations
above, and it could be indicated as follows, continuing the pattern above:

((AB)(C(DE))) 205 + 127 = 332

Each pair of parentheses contains two “subcodes” each of which is either a letter of
a grouped pair of similar items. We can unwrap the parentheses as follows. Assign a
leading 0 to one of the subcodes and a leading 1 to the other. Then continue recursively.

Thus the first bit tells us whether to go with (AB) or (C(DE)); arbitrarily use 0 for (AB)
and 1 for (C(DE)). If we see a 0, we only need one bit to distinguish between A and B,
so 00 means A and 01 means B. If we see a leading 1. then the next bit tells us whether
we have a C or a (DE), et cetera, so the codes for the last three should be 10 for C, 110
for D and 111 for E:

8



Character Frequency Code

A 123 00
B 82 01
C 76 10
D 40 110
E 11 111

This optimal encoding requires only 3 bits for the least-common character, but there are
situations with only 5 characters that 4 bits would be required for an optimal encoding.
Here’s an example:

Character Frequency Code

A 16 0
B 8 10
C 4 110
D 2 1110
E 1 1111

Follow the logic we used for the previous example to see that the structure for the
encoding would be (A(B(C(DE)))).

5 Tree Formulation

Another way to visualize the Huffman encoding is as a tree. Ifwe follow the same
procedure as above for the following distribution of letters:

A 15
B 12
C 6
D 5
E 4
F 2
G 1

we obtain the encoding structure ((AB)((CD)(E(FG)))). This can be displayed as the
binary tree below, where the letters are the final nodes, the numbers in boxes are the
weights, both of the final and internal nodes and the 0’s and 1’s above the lines indicate
the encoding. To find the code for any particular letter, justfind the unique path to the
letter from the root (numbered 44) and read off the numbers onthe connecting edges.

9



44

27

0

A 150

B 12

1

17

1

11

0

C 60

D 5

1

7

1 E 40

3
1 F 20

G 1

1

For example, to get to D from the root we follow three edges labelled 1, 0 and 1, so the
Huffman encoding for D in this example is 101. Here is the complete encoding:

A 15 00
B 12 01
C 6 100
D 5 101
E 4 110
F 2 1110
G 1 1111

6 Solutions

6.1 Optimal 3-character encoding

We want to show that ifp1 ≥ p2 ≥ p3, then assigning the code 0 toC1 and the codes
10 and 11 toC2 andC3 (in either order) generates the most efficient encoding; namely,
that:

p1(1) + p2(2) + p3(2)

is the smallest possible value. In other words, if we assign 2bits toC1, the results will
always be worse. Here are the average bit lengths corresponding to the other ways we
could make that assignment:

p2(1) + p1(2) + p3(2)

p3(1) + p1(2) + p2(2)

10



We just have to show that:

p1(1) + p2(2) + p3(2) ≥ p2(1) + p1(2) + p3(2)

and
p1(1) + p2(2) + p3(2) ≥ p3(1) + p1(2) + p2(2).

Both are similar; let’s just do the first. The following inequalities are all equivalent; we
just add or subtract the same thing from both sides to move from one to the next:

p1(1) + p2(2) + p3(2) ≥ p2(1) + p1(2) + p3(2)

p1(1) + p2(2) ≥ p2(1) + p1(2)

p2(2 − 1) ≥ p1(2 − 1)

p2 ≥ p1

Since the last line is true and they’re all equivalent, we’veshown the first inequality to
be true. The second is similar.

6.2 Optimal 8-character encoding

Here is one optimal encoding:

i Ci pi encoding bi

1 A 0.28 00 2
2 B 0.27 01 2
3 C 0.23 10 2
4 D 0.09 110 3
5 E 0.04 11100 5
6 F 0.04 11101 5
7 G 0.03 11110 5
8 H 0.02 11111 5

and the average number of bits per character is:

p1 · b1 + · · · + p8 · b8

= 0.28 · 2 + 0.27 · 2 + · · · + 0.02 · 5 = 2.48.

Of course any of the encodings with the same number of bits could be swapped around.
You just need to find one where A, B and C are encoded in 2 bits, D in 3 bits, and E, F,
G and H in 5 bits.

11


