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1 Problems

1. Suppose you have a standard8 × 8 chessboard and a set of dominoes that are exactly the right size to cover
two adjacent squares. Two opposite corners of the chessboard are removed. Is it possible to cover the
remaining squares using31 dominoes?

2. (From BAMO 2006) All the chairs in a classroom are arrangedin a squaren × n array (in other words,n
columns andn rows), and every chair is occupied by a student. The teacher decides to rearrange the students
according to the following two rules:

• Every student must move to a new chair.

• A student can only move to an adjacent chair in the same row or to an adjacent chair in the same
column. In other words, each student can move only one chair horizontally or vertically. (Note that the
rules above allow two students in adjacent chairs to exchange places.)

For which values ofn is this possible?

3. Suppose, instead of dominoes, you have “trominoes”: setsof three squares attached together in a straight
line. If you try to cover a full8 × 8 chessboard it obviously cannot be done, since3 does not divide evenly
into 64. The best result you can hope for is to use21 trominoes and cover63 of the64 possible squares,
leaving one square uncovered. Can such a covering be achieved for an arbitrary square chosen as the one
to be left uncovered? If not, for which omitted squares is it possible to achieve a covering of all the others
using trominoes?

4. (From BAMO 2008) This time, consider a9× 9 chessboard, and you wish to cover as much of it as possible
using figures shaped like the one below (which we will call a “tetromino”), where each of the four squares
is the same size as the squares on a chessboard. The pieces canbe rotated or flipped over. What is the
maximum number of non-overlapping pieces that you can fit?

5. The Cheese Cube. Suppose that a cube of cheese is sliced into 27 sub-cubes (so that it looks something
like Rubik’s cube). A mouse starts eating in one corner and eats each sub-cube completely before eating
an adjacent sub-cube. (An adjacent sub-cube is one that shares a face with the previous sub-cube.) Can the
mouse find a path so that the last cube he eats is the one in the center?

6. The four-color theorem states that any planar map of countries or states can be colored with four different
colors in such a way that no two countries that share a boundary are colored with the same color. Of course
the countries have to be connected, and countries that sharejust a single point are not assumed to share a
boundary: the boundary has to have non-zero length. This theorem was not proved for many years, but was
finally proved by Appel and Haken in 1989 with the help of computers.
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Our problem is easier and does not require hundreds of hours of computer time. Suppose that the “world”
is a plane, and that a number of circles are drawn on the plane.These circles may be of different sizes, and
they may overlap, but the net result is that they finally divide the plane into a number of regions. Suppose
that each region is a country, and find the minimum number of colors required to color them satisfying the
same conditions as in the original four-color theorem.

7. In a group of six people, every pair of people have either shaken hands or they have not. Show that there is
a set of three people such that either:

• All three have shaken hands with the other two.

• Or, none of the three have ever shaken hands.

Is this true for every group of five people?

8. Coloring in Sudoku. A Sudoku puzzle consists of a9 × 9 grid divided into3 × 3 sub-blocks with some of
the grid squares containing numbers between1 and9. A completed puzzle contains the numbers1 through
9 arranged in some order in the grid so that each row, column andsub-block contains each of the numbers
exactly once. To solve a puzzle, you must begin with the initial partially-filled grid and complete it as
described above. The figure below shows a puzzle on the left and the solution on the right.
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A sudoku puzzle can be viewed as a coloring problem. Imagine that all81 squares in the grid are vertices
of a (mathematical) graph. The vertices are connected with edges if they lie in the same row, column, or
sub-block. The original numbers in the puzzle are nine different “colors” the goal is to color the graph in
such a way that no two vertices connected by an edge share the same color.

In the following two grids, suppose you are concentrating onwhich squares contain the number1. In both
cases, the squares containing the1 are shown, and the squares that are circled indicate the onlyother possible
squares where a1 could be placed. Every unfilled square that is not circled must contain a number other than
1. Can you make any additional conclusions in the two puzzles about which squares either must or must not
contain a1?
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9. Multi-Coloring in Sudoku

This is a similar idea that of simple coloring used in the previous example, but involves two (or more) chains
of colors. Here are two examples like those above, where the number under consideration is1 and the circled
squares indicate possible positions for the remaining1 entries. What conclusions can you draw?
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2 Solutions

1. Suppose that the chessboard is colored normally with alternating white and black squares. Each domino, no
matter where it is placed will cover one black and one white square. Originally, the chessboard will contain
32 white and32 black squares. If the two corners are removed, then you have removed two squares of the
same color so the resulting chessboard will have30 squares of one color (say white) and32 of the other
(black). At most30 dominos can be placed since each covers one white square, so it is impossible to cover
the entire chessboard which would require31 dominoes.

2. This problem is very similar to the previous one. Color thechairs alternately, as you would a chessboard,
with white and black. As described in the problem, for a switch of the students to occur, each student in a
black chair has to move to a white chair and vice-versa. Thus there must be the same number of white and
black squares for a seat-switch to be possible. Ifn is odd, then there aren2 seats, which is also odd, so there
cannot be the same number of white and black squares. Thus it is impossible in this case.

It is easy to construct a swapping pattern ifn is even: starting from one end, swap students in adjacent
columns of seats with the student in the other column but in the same row.

3. To solve this problem we need to color the board with three colors, which we’ll call1, 2 and3. Consider the
two colorings shown below:

1 2 3 1 2 3 1 2

2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1

1 2 3 1 2 3 1 2

2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1

1 2 3 1 2 3 1 2

2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2

3 1 2 3 1 2 3 1

2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2

3 1 2 3 1 2 3 1

2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2

3 1 2 3 1 2 3 1

Clearly each tromino covers a1, 2 and3 on both boards. On the board on the left, there are21 1’s, 22 2’s
and21 3’s. This means a square marked2 must be left uncovered. In the board on the right, there are22 of
the1’s (and21 of the2’s and3’s), so a1 must be left uncovered on that board. There are only four positions
that are covered by a2 on the first board and a1 on the second. The possible empty squares are illustrated
in the following figure:

• •

• •

This is not a complete proof: we need to demonstrate with at least one tiling that the board can be covered
with one of the squares marked with a dot above left uncovered. If we can do one, the four rotations of that
board will provide the other three examples. This is easy to do, however.
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4. This time, consider the following “coloring” where the dotted squares have one color and the non-dotted
squares, another:

• • • •

• • • •

• • • •

• • • •

It is easy to see that no matter how the tetromino is placed on the board, it will cover exactly one of the black
dots. Since there are exactly16 black dots, the largest number of tetrominoes possible is16. It is easy to
place16 non-overlapping tetrominoes on the board to show that16 is possible as well as maximal.

5. This is impossible. Color the sub-cubes alternately as you would a three-dimensional chessboard. If a corner
is colored black, then there will be14 black sub-cubes and13 white ones. Any mouse path must alternate
black and white cubes. If the mouse eats all27 sub-cubes, the final one will have to be black, but the
sub-cube in the center is white.

6. This is fairly easy to prove. Imagine that the plane is initially colored entirely one color, say white. Now,
every time you draw a circle, reverse all the colors of the regions inside the new circle. This shows that any
such map can be colored with exactly two colors. The following figure illustrates the idea.

7. We will show that this is true by considering a “handshake graph”. Each of the vertices of the following
graph represents one of the six people, and the edge between any pair of vertices will be represented by a
line. In this paper, all the edge lines are black, but what we would like to do is to color the edge red if the
two particular people at the ends of the edge have shaken hands, and we will color it blue if that particular
pair of people have not shaken hands. Thus, no matter what thesituation, all of the edges in the graph will
be colored, with some of them red and the rest of them blue.

The situation that we would like to prove exists is that no matter how this coloring is done, there is either a
triangle somewhere in the figure with all three of its edges red, or a triangle somewhere in the figure with all
of its edges blue. (Of course there could be multiple triangles like this, or both red and blue triangles. All
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that matters is that there be at least one triangle of a solid color.)

Suppose, on the contrary, that there is no solid red triangleand no solid blue triangle. Since every vertex on
the graph has5 edges going out of it, choose a particular vertex and at leastthree of the edges coming out
have the same color. Suppose that color is red, and the reverse argument will work if it is blue. In the figure
below, the three solid edges coming from the vertex at the left represent the three red lines.

We know that there are no red triangles, so the three verticeson the right cannot be connected with red edges,
but they must be connected, so all the connecting lines must be blue, yielding the following figure, where
the blue lines are dashed:

But this yields a solid blue triangle connecting all the vertices on the right. Thus it is impossible not to have
some triangle of a solid color.

8. Notice that in Sudoku it is impossible to have the same number appearing twice in the same row, column
or block. This means that if there are exactly two squares in arow, column or block that could possibly
contain that number, exactly one of them will and the other will not. Thus we could color one red and one
green, and if the red contains the number, the green will not,and vice-versa. Suppose you have colored two
such squares, but the red square appears in a different row, column or block with one other possible square.
Then that square can be colored green, et cetera, forming red-green “chains”. As you walk along a chain,
alternate colored squares appear, and in the final solution,either all the red squares or all the green squares
will contain that candidate number and all the squares of theopposite color will not.

If we color the first example as illustrated below, with “R” for “red” and “G” for “green”, we obtain:
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Now consider the square atb6. It is in the same row as a red square and in the same column as a green
square. Either the red square or the green square must contain a1, so the square atb6 cannot contain a1. If
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the circle aroundb6 is erased, there are suddenly only two possibilities in theb row, so the square atb7 can
be colored green, and using the same argument, the square ate7 cannot contain a1. That, of course, forces
e8 to contain a1, and at least one more elimination can be made.

Much more can be done with the second example. Here it is aftersome of the squares are colored red and
green as before, where we begin by coloringa9 as red:
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Almost all the squares can be colored, but there is a surprising result: two spots in the fifth column are red
and since they cannot both contain a1, neither must, so all the green squares must contain a1.

9. Multicoloring is just an extension of simple coloring, but where multiple chains of colors are possible. In
the first example, we have colored two chains: a red-green (R-G) chain and a blue-yellow (B-Y) chain.
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Notice that if green holds the1, then neither blue nor yellow can hold a1. But one of blue or yellowmust
hold a1. Therefore the red squares contain the1.

Now let’slook at the second example, again colored with a red-green and a blue-yellow chain:
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Since the red and blue appear in the same line (and in the same block), it cannot be true that both the red
and blue cells contain a1. That means that either the green or the yellow cells containa 1, so there is a1 in
eitherd1 or b5. Thus there cannot be a1 in d5.

We can build a formal mathematical system to deal with the interactions of colored chains in a multicolored
Sudoku puzzle. Rather than use color names, let’s suppose that each chain consists of colors labeled with
pairs of uppercase and lowercase letters. Thus we will have chains of “colors”a andA, of “colors” b andB,
of c andC, and so on. All the chains, of course, deal with the same candidate number. In all of the examples
that follow, let’s assume that the candidate in question is1.

Think of it this way: “a” stands for the logical proposition: “If all the squares marked witha hold a1, then
none of the squares marked withA contain a1, and vice-versa: If all the squares marked withA contain a1
then none of the squares marked witha contain a1. If “ ¬” stands for the logical operator “not”, then we can
express the relationships above as “a ≡ ¬A” or equivalently, “A ≡ ¬a”. The “≡” stands for “is logically
equivalent to”.

Now suppose we’ve marked as many squares that have1 as a possible candidate with chains ofa − A, of
b − B, of c − C, and so on, where each is as long as possible. (By the way, these are not strictly “chains”,
since there may be branching.)

What happens if squares markeda andb appear in the same row, column or block? The expression we will
use here when that occurs is “a excludesb”. In other words, ifa is true, thenb must be false, and also, ifb is
true, thena must be false. We will writea!b to mean “a excludesb”.

The “!” or “excludes” logical operator is symmetric; in other words,a!b ≡ b!a.

The expressiona!b can also be stated, “at most one ofa or b is true”. It could be that neither is true, but if
one of them is true then the other must be false. If you are familiar with logic gates in electrical engineering,
this is the “nand” logical operator which stands for “not and”: “ a nandb” means “it isnot the case that both
a andb are true, and both may be false”.

After you have marked the complete color chains in any Sudokupuzzle, you can then find pairs that exclude
each other because they collide on a line or in a block. You might have, for example, a set like this of
exclusions:

{a!b, c!D, d!A, C!e}. (1)

The nice thing about this notation is that sometimes pairs ofexclusions can imply other pairs. The general
rule is this: Ifa!b andB!c thena!c. In English, “If a excludes a color, and the opposite of that excluded
color excludes a third colorc, thena excludesc.” See if you can prove this before continuing.

It is not too hard to prove. The expressiona!b means that ifa is true thenb cannot be true, so ifa is true, then
the opposite ofb, which isB must be true. But sinceB!c this means thatc cannot be true. Put these together
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and conclude that ifa is true,c cannot be true. Reverse the logic staring withc: if c is true,B cannot be true.
Thusb is true, and hencea cannot be true, so the truth ofc implies the falsity ofa. This is equivalent toa!c.
Notice that we used the symmetry of the “!” operator: thata!b ≡ b!a andB!c ≡ c!B.

If the sample set in Equation 1 applied to a particular puzzle, froma!b andd!A we can conclude thata!d, and
from c!D andC!e we can conclude thatD!e. Make sure you see why. By using this exclusionary version of
transitivity, we can discover exclusionary features of chains that do not interact directly with each other, but
only indirectly, via other chains.

So fine, we can list exclusionary color chain relations and possibly find more such exclusionary relations, but
how can we use these to either eliminate the candidate1 from some Sudoku squares or better yet, determine
that some squares must contain the candidate1?

Here is how to use them. Ifa!b, then at least one ofA or B must be true (since if neitherA nor B is true
then botha andb are true which is impossible). Thus ifa!b and we find a square that shares a row, column
or block with both anA and aB, that square cannot contain the candidate1.

Let’s try applying what we have to the first multicoloring example presented here. We usedG − R and
B − Y as our chains, so to use the same notation, letG − R be replaced bya − A (in other words,G is a

andR is A. Similarly, letB −Y be replaced byb−B. In this example, we have:a!b anda!B. We combine
these two to conclude thata!a. This means “eithera or a is false”, or equivalently, “a is false”. SoA is true.

Using the same mappings as above toa− A andb − B in the second multicoloring example, we have:A!b.
This means that any candidate square that shares a row, column or block with botha andB cannot contain
a1. The squared5 is such a square and thus can be eliminated as a candidate.

The following example will allow you to experiment with multicoloring. The candidate in this case is, as
always,1. Assume that due to various considerations, the only squares that can contain candidate1 are
marked with a small1 in the upper left corner. Multicolor the puzzle below and seewhat conclusions can be
drawn.
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3 Sudoku Coloring/Multicoloring Examples

Below are six Sudoku examples where coloring or multicoloring can be applied. In the examples below, try to
apply coloring (or multicoloring) using candidate6 on the left and2 on the right in the first row. In the second row,
consider squares where4 is a candidate in both, and in the final row, use7 on the left and4 on the right.
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