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1 Problems

1. Suppose you have a standard 8 chessboard and a set of dominoes that are exactly the rightastover
two adjacent squares. Two opposite corners of the chesslaoarremoved. Is it possible to cover the
remaining squares usiryg dominoes?

2. (From BAMO 2006) All the chairs in a classroom are arranigea square. x n array (in other wordsp
columns andh rows), and every chair is occupied by a student. The teadtédes to rearrange the students
according to the following two rules:

e Every student must move to a new chair.

e A student can only move to an adjacent chair in the same row antadjacent chair in the same
column. In other words, each student can move only one chaizdntally or vertically. (Note that the
rules above allow two students in adjacent chairs to exahatages.)

For which values of: is this possible?

3. Suppose, instead of dominoes, you have “trominoes”: afetsree squares attached together in a straight
line. If you try to cover a fulB x 8 chessboard it obviously cannot be done, sihic®es not divide evenly
into 64. The best result you can hope for is to @detrominoes and coves3 of the 64 possible squares,
leaving one square uncovered. Can such a covering be adHimvan arbitrary square chosen as the one
to be left uncovered? If not, for which omitted squares ioggible to achieve a covering of all the others
using trominoes?

4. (From BAMO 2008) This time, considetdax 9 chessboard, and you wish to cover as much of it as possible
using figures shaped like the one below (which we will calletrtmino”), where each of the four squares
is the same size as the squares on a chessboard. The piedas caated or flipped over. What is the
maximum number of non-overlapping pieces that you can fit?

5. The Cheese Cube. Suppose that a cube of cheese is slio& istib-cubes (so that it looks something
like Rubik’s cube). A mouse starts eating in one corner ansl each sub-cube completely before eating
an adjacent sub-cube. (An adjacent sub-cube is one thasshdace with the previous sub-cube.) Can the
mouse find a path so that the last cube he eats is the one inrttez2e

6. The four-color theorem states that any planar map of cmsnbr states can be colored with four different
colors in such a way that no two countries that share a boyradtarcolored with the same color. Of course
the countries have to be connected, and countries that glsdra single point are not assumed to share a
boundary: the boundary has to have non-zero length. This¢hewas not proved for many years, but was
finally proved by Appel and Haken in 1989 with the help of corneps.



Our problem is easier and does not require hundreds of hdwenaputer time. Suppose that the “world”
is a plane, and that a number of circles are drawn on the plEmese circles may be of different sizes, and
they may overlap, but the net result is that they finally divide plane into a number of regions. Suppose
that each region is a country, and find the minimum number lafrsgequired to color them satisfying the
same conditions as in the original four-color theorem.

. In a group of six people, every pair of people have eithakeh hands or they have not. Show that there is
a set of three people such that either:

o All three have shaken hands with the other two.
e Or, none of the three have ever shaken hands.

Is this true for every group of five people?

. Coloring in Sudoku. A Sudoku puzzle consists & a 9 grid divided into3 x 3 sub-blocks with some of
the grid squares containing numbers betweamd9. A completed puzzle contains the numbétsrough

9 arranged in some order in the grid so that each row, columrsahéblock contains each of the numbers
exactly once. To solve a puzzle, you must begin with thedhjiartially-filled grid and complete it as
described above. The figure below shows a puzzle on the léftrensolution on the right.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
a 4|8 a|6/2/4/8 7 1 9 3 3
b 9 46 7 b|119/ 34,6 5 8 7 2
c 5 6|1 4 c|7/5/8/3 9 2 6 14
d|2]1 6 5 d/2/1/9/6/ 4 3 5 8 1
e(5/8 7 9 4 1 e|5/8/6/7 2 9 3 4 1
f 7 8 6 9 143 715 8 2 6 9
9/3/4|5 9 9/3/4/5/2 16/ 7 9 8§
h 6 3|7 2 h|86/1/9 3 7 4 2 5
i 4|1 197125 8 41 3 6

A sudoku puzzle can be viewed as a coloring problem. Imadiatdll 81 squares in the grid are vertices
of a (mathematical) graph. The vertices are connected wigle® if they lie in the same row, column, or
sub-block. The original numbers in the puzzle are nine iffié“colors” the goal is to color the graph in
such a way that no two vertices connected by an edge sharartteeclor.

In the following two grids, suppose you are concentratingubiich squares contain the numberin both
cases, the squares containing ttere shown, and the squares that are circled indicate theotimdy possible
squares whereacould be placed. Every unfilled square that is not circledtrooistain a number other than
1. Can you make any additional conclusions in the two puzalesiawhich squares either must or must not
contain al?



O

9. Multi-Coloring in Sudoku

This is a similar idea that of simple coloring used in the yag example, but involves two (or more) chains
of colors. Here are two examples like those above, whereth#er under considerationisand the circled
squares indicate possible positions for the remainiegtries. What conclusions can you draw?
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2 Solutions

1. Suppose that the chessboard is colored normally withnalteg white and black squares. Each domino, no
matter where it is placed will cover one black and one whitgasg. Originally, the chessboard will contain
32 white and32 black squares. If the two corners are removed, then you leameved two squares of the
same color so the resulting chessboard will haWesquares of one color (say white) aB2l of the other
(black). At most30 dominos can be placed since each covers one white squatés smpossible to cover
the entire chessboard which would requitedominoes.

2. This problem is very similar to the previous one. Color thairs alternately, as you would a chessboard,
with white and black. As described in the problem, for a stvid€ the students to occur, each student in a
black chair has to move to a white chair and vice-versa. Theretmust be the same number of white and
black squares for a seat-switch to be possible.iff odd, then there an¢* seats, which is also odd, so there
cannot be the same number of white and black squares. Thsipossible in this case.

It is easy to construct a swapping pattermifs even: starting from one end, swap students in adjacent
columns of seats with the student in the other column butérsdme row.

3. To solve this problem we need to color the board with thoders, which we’ll calll, 2 and3. Consider the
two colorings shown below:
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Clearly each tromino coversig 2 and3 on both boards. On the board on the left, there2dre’s, 22 2's
and21 3's. This means a square mark&dust be left uncovered. In the board on the right, thereareaf
thel’s (and21 of the2's and3’s), so al must be left uncovered on that board. There are only foutiposi

that are covered by 20n the first board and aon the second. The possible empty squares are illustrated
in the following figure:

This is not a complete proof: we need to demonstrate withast lene tiling that the board can be covered
with one of the squares marked with a dot above left uncovedfeee can do one, the four rotations of that
board will provide the other three examples. This is easytddwever.



4. This time, consider the following “coloring” where thettinl squares have one color and the non-dotted
squares, another:

Itis easy to see that no matter how the tetromino is placeti®baard, it will cover exactly one of the black
dots. Since there are exactlg black dots, the largest number of tetrominoes possibi§.idlt is easy to
placel6 non-overlapping tetrominoes on the board to show 1has possible as well as maximal.

5. Thisisimpossible. Color the sub-cubes alternately asymuld a three-dimensional chessboard. If a corner
is colored black, then there will bkt black sub-cubes antB white ones. Any mouse path must alternate
black and white cubes. If the mouse eats2allsub-cubes, the final one will have to be black, but the
sub-cube in the center is white.

6. This is fairly easy to prove. Imagine that the plane isatlit colored entirely one color, say white. Now,
every time you draw a circle, reverse all the colors of theéargjinside the new circle. This shows that any
such map can be colored with exactly two colors. The follgfigure illustrates the idea.

7. We will show that this is true by considering a “handshatapl”. Each of the vertices of the following
graph represents one of the six people, and the edge betwggraa of vertices will be represented by a
line. In this paper, all the edge lines are black, but what weld like to do is to color the edge red if the
two particular people at the ends of the edge have shakershand we will color it blue if that particular
pair of people have not shaken hands. Thus, no matter whatttletion, all of the edges in the graph will
be colored, with some of them red and the rest of them blue.

The situation that we would like to prove exists is that noteratow this coloring is done, there is either a
triangle somewhere in the figure with all three of its edgés oe a triangle somewhere in the figure with all
of its edges blue. (Of course there could be multiple triaadjke this, or both red and blue triangles. All



that matters is that there be at least one triangle of a solat.

Suppose, on the contrary, that there is no solid red triaangdeno solid blue triangle. Since every vertex on
the graph has edges going out of it, choose a particular vertex and at thaseé of the edges coming out
have the same color. Suppose that color is red, and the esaggment will work if it is blue. In the figure
below, the three solid edges coming from the vertex at thedgfesent the three red lines.

We know that there are no red triangles, so the three vedit#se right cannot be connected with red edges,
but they must be connected, so all the connecting lines nmaubtue, yielding the following figure, where
the blue lines are dashed:

But this yields a solid blue triangle connecting all the iger$ on the right. Thus it is impossible not to have
some triangle of a solid color.

. Notice that in Sudoku it is impossible to have the same rarmppearing twice in the same row, column
or block. This means that if there are exactly two squaresroma column or block that could possibly
contain that number, exactly one of them will and the othdirwait. Thus we could color one red and one
green, and if the red contains the number, the green willarat,vice-versa. Suppose you have colored two
such squares, but the red square appears in a differentebwmo or block with one other possible square.
Then that square can be colored green, et cetera, formingresh “chains”. As you walk along a chain,
alternate colored squares appear, and in the final solwitirer all the red squares or all the green squares
will contain that candidate number and all the squares obppmsite color will not.

If we color the first example as illustrated below, with “R’rfoed” and “G” for “green”, we obtain:
1 2 3 45 6 7 8 9

a

b T R
cll

d 1
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h G
i G)R

Now consider the square &6. It is in the same row as a red square and in the same column reea g
square. Either the red square or the green square mustrtaritaso the square &t cannot contain al. If



the circle around6 is erased, there are suddenly only two possibilities inthmv, so the square a7 can
be colored green, and using the same argument, the squareatnot contain 4. That, of course, forces
e8 to contain al, and at least one more elimination can be made.

Much more can be done with the second example. Here it is sdtae of the squares are colored red and
green as before, where we begin by colorifgas red:

1 2 3 4 5 6 7 8 9
a R
b( G R

i 1

Almost all the squares can be colored, but there is a sungrigisult: two spots in the fifth column are red
and since they cannot both contaim,aeither must, so all the green squares must contain a

. Multicoloring is just an extension of simple coloring,tlwhere multiple chains of colors are possible. In
the first example, we have colored two chains: a red-gree@)Bhain and a blue-yellow (B-Y) chain.

1 2 3 4 5 6 7 8 9
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Notice that if green holds thg then neither blue nor yellow can holdla But one of blue or yellownust
hold al. Therefore the red squares contain the

Now let'slook at the second example, again colored with agiexn and a blue-yellow chain:



i 1

Since the red and blue appear in the same line (and in the slaeid,kt cannot be true that both the red
and blue cells contain B That means that either the green or the yellow cells comtaijrso there is 4 in
eitherdl or b5. Thus there cannot belain d5.

We can build a formal mathematical system to deal with theradtions of colored chains in a multicolored
Sudoku puzzle. Rather than use color names, let's suppasedkh chain consists of colors labeled with
pairs of uppercase and lowercase letters. Thus we will hiaams of “colors”a and A, of “colors” b and B,

of candC, and so on. All the chains, of course, deal with the same datelnumber. In all of the examples
that follow, let's assume that the candidate in questidn is

Think of it this way: “a” stands for the logical proposition: “If all the squares ked witha hold a1, then
none of the squares marked withcontain al, and vice-versa: If all the squares marked witltontain al
then none of the squares marked withontain al. If “ =" stands for the logical operator “not”, then we can
express the relationships above as= —A” or equivalently, “A = —a”. The “=" stands for “is logically
equivalent to”.

Now suppose we've marked as many squares that hagea possible candidate with chainsaof A, of
b — B, of c — C, and so on, where each is as long as possible. (By the wayg #nesot strictly “chains”,
since there may be branching.)

What happens if squares markedndb appear in the same row, column or block? The expression we wil
use here when that occurs is €xcludes”. In other words, ifa is true, therb must be false, and also,tfis
true, themz must be false. We will write!b to mean @ excludes”.

The “I” or “excludes” logical operator is symmetric; in other werd!b = bla.

The expression!b can also be stated, “at most oneqodr b is true”. It could be that neither is true, but if
one of them is true then the other must be false. If you areli@miith logic gates in electrical engineering,
this is the “nand” logical operator which stands for “not &arit: nandb” means “it isnot the case that both

a andb are true, and both may be false”.

After you have marked the complete color chains in any Sughizzle, you can then find pairs that exclude
each other because they collide on a line or in a block. Youhtrligive, for example, a set like this of
exclusions:

{alb,c!D,d!A, Cle}. 1)

The nice thing about this notation is that sometimes paiesxofusions can imply other pairs. The general
rule is this: Ifa!b and Blc thenale. In English, “If o excludes a color, and the opposite of that excluded
color excludes a third colar, thena excludes:.” See if you can prove this before continuing.

Itis not too hard to prove. The expressidh means that it is true therb cannot be true, so if is true, then
the opposite 0b, which is B must be true. But sincB!c this means that cannot be true. Put these together



and conclude that i is true,c cannot be true. Reverse the logic staring witlf ¢ is true,B cannot be true.
Thusb is true, and hence cannot be true, so the truth efmplies the falsity ofu. This is equivalent ta!c.
Notice that we used the symmetry of thé& 8perator: that:!b = bla andB!c = ¢! B.

If the sample set in Equation 1 applied to a particular pyZeben a!b andd! A we can conclude thatd, and
from ¢! D andC'e we can conclude thdble. Make sure you see why. By using this exclusionary version of
transitivity, we can discover exclusionary features ofich#hat do not interact directly with each other, but
only indirectly, via other chains.

So fine, we can list exclusionary color chain relations argsitaty find more such exclusionary relations, but
how can we use these to either eliminate the candid&tam some Sudoku squares or better yet, determine
that some squares must contain the canditiate

Here is how to use them. if!b, then at least one ol or B must be true (since if neithet nor B is true
then botha andb are true which is impossible). Thusdfb and we find a square that shares a row, column
or block with both an4 and aB, that square cannot contain the candidate

Let’s try applying what we have to the first multicoloring exgle presented here. We uséd— R and
B —Y as our chains, so to use the same notatiorGilet R be replaced by — A (in other wordsG is a

andR is A. Similarly, letB — Y be replaced by — B. In this example, we have:b anda! B. We combine
these two to conclude thata. This means “eithed or a is false”, or equivalently,d is false”. SoA is true.

Using the same mappings as above te A andb — B in the second multicoloring example, we havib.
This means that any candidate square that shares a row, wolubtock with botha and B cannot contain
al. The squards5 is such a square and thus can be eliminated as a candidate.

The following example will allow you to experiment with migibloring. The candidate in this case is, as
always, 1. Assume that due to various considerations, the only squhet can contain candidateare
marked with a small in the upper left corner. Multicolor the puzzle below and sd@t conclusions can be
drawn.

1 2 3 4 5 6 7 8 9
al4/8] |" |6 |2/7|5
b|2]5 7 1 6
cl" |7/6| | " |4|3

d|5/2" |84 |6 |3
e’ 16/8/3/5 2 7 4
13 ' | 19/6/8/5]/2
9/8/3/5 | ' |19/6|7
h6 9| 8 3/ |4
i7" ' |16/3]9|5 |




Below are six Sudoku examples where coloring or multicolgrean be applied. In the examples below, try to

apply coloring (or multicoloring) using candidat®n the left an® on the right in the first row. In the second row,

consider squares whetas a candidate in both, and in the final row, Jsen the left andt on the right.

3 Sudoku Coloring/Multicoloring Examples
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