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1 Introduction

The problem is that we tend to live among the set of puny integers and generally ignore the
vast infinitude of larger ones. How trite and limiting our view!

— P.D. Schumer

It seems that most children at some age get interested in large numbers. “What comes after a thousand?
After a million? After a billion?”, et cetera, are common questions.

Obviously there is no limit; whatever number you name, a larger one can be obtained simply by adding
one. But what is interesting is just how large a number can be expressed in a fairly compact way.

Using the standard arithmetic operations (addition, subtraction, multiplication, division and exponentia-
tion), what is the largest number you can make using three copies of the digit “9”?

It’s pretty clear we should just stick to exponents, and given that, here are some possibilities: 999, 999,
999, and 99

9

.

Already we need to be a little careful with the final one: 99
9

. Does this mean: (99)9 or 9(9
9)? Since

(99)9 = 981 this interpretation would gain us very little. If this were the standard definition, then why
not write ab

c

as abc? Because of this, a tower of exponents is always interpreted as being evaluated from

right to left. In other words, ab
c

= a(b
c), ab

cd

= a(b
(cd)), et cetera.

With this definition of towers of exponents, it is clear that 99
9

is the best we can do. If expanded com-
pletely, it would have more than 369, 000, 000 decimal places.

It’s a different story with three copies of the digit 2, however. The number 222 is the best you can do.

It’s fairly clear that stacking exponents makes huge numbers very rapidly, and you might at first think
that if you’ve got 100 symbols, your best bet would be to stack 100 9s in a tower of exponents and that
would pretty much beat all the other possibilities. While this would be a pretty large number, with a little
cleverness you can do far better.

2 Factorials and Their Relatives

The factorial function, n! = n× (n− 1)× · · · 3× 2× 1 is known to generate very large numbers, but if
we’re counting symbols in our description of large numbers, we can probably do better with 9’s than with
the factorial. With no limit on factorials, for example, there is of course no limit to the size of a number
we could generate with just three 9’s, since we could have:

999!, (999!)!, ((999!)!)!, . . . .

(The parenthesis are required above, since usually the doubled factorial symbol means something else:
8!! = 8× 6× 4× 2 and 9!! = 9× 7× 5× 3× 1, et cetera.)

There is also a hyper-factoral H(n) function that generates even larger numbers:

H(n) = 11 × 22 × 33 × · · · × nn.
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Finally, Pickover has defined a superfactorial function, n$, defined as follows:

n$ = n!n!
··
·n!︸ ︷︷ ︸

n! copies

,

and even 3$ has an enormous number of digits.

3 Names of Large Numbers

How are large numbers named? There’s some disagreement in the English language about how to name
them. There are two systems, one used by Americans and the other by the English. Most of the rest of
the world uses a system similar to the English one. In a sense, the English system is a bit more logical in
that the prefixes “Bi”, “Tri”, “Quad”, et cetera stand for two, three, and four groups of six zeroes. In the
American system, “Bi”, “Tri” and “Quad” stand for three, four, and five groups of three zeroes.

Here are the first few names in both systems:

Number Scientific American English
Notation Name Name

1, 000 103 Thousand Thousand
1, 000, 000 106 Million Million

1, 000, 000, 000 109 Billion Thousand Million
1, 000, 000, 000, 000 1012 Trillion Billion

1, 000, 000, 000, 000, 000 1015 Quadrillion Thousand Billion
1, 000, 000, 000, 000, 000, 000 1018 Quintillion Trillion

In the English system, sometimes the names “Milliard”, “Billiard”, “Trilliard”, “Quadrilliard”, et cetera,
are used in place of “Thousand Million”, “Thousand Billion”, et cetera.

The names continue in the same general way, and after Quintillion, they are: Sextillion (1021), Septil-
lion (1024), Octillion (1027), Nonillion (1030), Decillion (1033), Undecillion (1036), Duodecillion (1039),
Tredecillion (1042), Quattuordecillion (1045), Quindecillion (1048), Sexdecillion (1051), Septendecillion
(1054), Octodecillion (1057), Novemdecillion (1060), Vigintillion (1063), Unvigintillion (1066), Dovigin-
tillion (1069), Trevigintillion (1072), Quattuorvigintillion (1075), Quinvigintillion (1078), Sexvigintillion
(1081), Septenvigintillion (1084), Octovigintillion (1087), Novemvigintillion (1090), Trigintillion (1093).

The numbers in parentheses above correspond to the American names. To obtain the English values,
subtract 3 from each exponent and then double it.

The name Decillion is sometimes used to indicate 10303 in the American system and 10600 in the English
system. The name Googol stands for 10100—a 1 followed by a hundred zeroes—and the name Googolplex
means the number 1 followed by a Googol zeroes.

4 Scientific Names

You’ve probably heard of prefixes like “centi” meaning “hundredth” and “mega” meaning “million”. So
“centimeter” is one hundredth of a meter and “megavolt” is a million volts. There is an SI-approved set
of prefixes for measurements for a large number of sizes. Here is a table:
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Multiplier Prefix Multiplier Prefix
101 deca 10−1 deci
102 hecto 10−2 centi
103 kilo 10−3 milli
106 mega 10−6 micro
109 giga 10−9 nano
1012 tera 10−12 pico
1015 peta 10−15 femto
1018 exa 10−18 atto
1021 zetta 10−21 zepto
1024 yotta 10−24 yocto

So in 20 grams of hydrogen gas, there are about 10 moles of H2 molecules, or 10 × 6.02323 = 6.023 ×
1024 = 6.023 yotta molecules.

5 A Really Big Number

This is the first really big number I ever saw. It was shown to me by Leo Moser while I was in high school.

First, we begin by saying what we mean by n
111 (which we will pronounce as “triangle-n”). It will simply

be defined as nn:
n
111 = nn.

Thus, 2
111 = 22 = 4, and 3

111 = 33 = 27, et cetera.

Next, we’ll define “square-n”: n , to be the number n surrounded by n triangles. Thus, 2 = 2
111



11111 =

4
111 = 44 = 256.

In a similar way, we’ll define “pentagon-n”: n
HHvv)) �� , to be the number n surrounded by n squares. Thus,

2
HHvv)) �� = 2 = 256 . So how big is “square-256”? Well, it is the number 256 surrounded by 256

triangles. To get rid of the innermost triangle, we obtain 256256, a number with 616 digits, surrounded
by 255 triangles. Raising this 616-digit number to its own power will leave us with “only” 254 triangles,
et cetera. It is fairly obvious that this number is almost unimaginably large. The number “pentagon-2” is
sometimes called just “mega”, and “pentagon-10” is sometimes called “megistron”.

In the same way, we can define “hexagon-n”, “heptagon-n”, and so on.

But at this point I become bored with my notation so I’ll introduce an easier one. Define “2-sub-1”,
“2-sub-2”, et cetera, as:

21 = 2
111

22 = 2

23 = 2
HHvv)) ��

24 = 2
1111 

and so on. The number I am really interested in is:

2
2
HHvv)) ��
,

or in other words, “2-sub-pentagon-2”.

As professor Moser said, “Of course now that I’ve shown you this one, you can show me a larger one,
but this is probably the largest number you have ever seen.”, and he was certainly right for that particular
group of high-school students. This huge number is sometimes called the Moser number.
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6 Ackermann’s Function

Note: If you are a teacher presenting this to younger students, you may find the pedagogical notes in
Section 14 useful.

Let’s consider an innocent-looking function which is simple to describe, but which will increase at an
unbelievable rate. It is a very famous rapidly-increasing function introduced by Ackermann to settle a
problem in logic. He wanted to show that there exist “general recursive” functions that are not “primitive
recursive”. We don’t worry about the definitions of “primitive recursive” or “general recursive”, but his
proof consisted of the presentation of a general recursive function (Ackermann’s function) that he could
show to increase more rapidly than any primitive recursive function.

The function we wish to calculate is called Ackermann’s function, and it is defined as follows:

A(m,n) =

 n+ 1 : if m = 0
A(m− 1, 1) : if m > 0,n = 0

A(m− 1, A(m,n− 1)) : if m > 0,n > 0
(1)

The easiest way to understand it is to make a table of the values of A(m,n) beginning with the easy
ones. In the table below, n increases to the right, and the rows correspond to m = 0, 1, 2, 3, . . .. The “*”s
indicate values we have not yet determined. The first row, where m = 0, is easy. The general formula is
obviously A(0, n) = n+ 1.

m\n 0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10 11
1 * * * * * * * * * * *
2 * * * * * * * * * * *
3 * * * * * * * * * * *
4 * * * * * * * * * * *

The next row where m = 1 is a bit trickier. If n = 0 we can use the second line in formula 1 that defines
Ackermann’s function to obtain: A(1, 0) = A(0, 1) = 2.

What is A(1, 1)? We must apply the third row in formula 1 to obtain: A(1, 1) = A(0, A(1, 0)) =
A(0, 2) = 3. Similarly: A(1, 2) = A(0, A(1, 1)) = A(0, 3) = 4. Make sure you understand what is
going on by working out a few more, and finally we can fill out the second row of the table as follows.

m\n 0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12
2 * * * * * * * * * * *
3 * * * * * * * * * * *
4 * * * * * * * * * * *

The general formula for this row is A(1, n) = n+ 2.

The third row can be approached in the same way:

A(2, 0) = A(1, 1) = 3

A(2, 1) = A(1, A(2, 0)) = A(1, 3) = 5

A(2, 2) = A(1, A(2, 1)) = A(1, 5) = 7

A(2, 3) = A(1, A(2, 2)) = A(1, 7) = 9

We can continue (do so for a few more) to obtain the third row:

m\n 0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12
2 3 5 7 9 11 13 15 17 19 21 23
3 * * * * * * * * * * *
4 * * * * * * * * * * *
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The general formula for this row is A(2, n) = 2n+ 3.

Repeat the process for A(3, n):

A(3, 0) = A(2, 1) = 5

A(3, 1) = A(2, A(3, 0)) = A(2, 5) = 13

A(3, 2) = A(2, A(3, 1)) = A(2, 13) = 29

A(3, 3) = A(2, A(3, 2)) = A(2, 29) = 61

If you do a few more, you will see that the table now looks like this:

m\n 0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12
2 3 5 7 9 11 13 15 17 19 21 23
3 5 13 29 61 125 253 509 1021 2045 4093 8189
4 * * * * * * * * * * *

The general formula for this row is A(3, n) = 2n+3 − 3.

Beginning with the next line, things begin to get ugly:

A(4, 0) = A(3, 1) = 13 = 22
2

− 3

A(4, 1) = A(3, A(4, 0)) = A(3, 13) = 65533 = 22
22

− 3

A(4, 2) = A(3, A(4, 1)) = A(3, 65533) = 265536 − 3 = 22
22

2

− 3

A(4, 3) = A(3, A(4, 2)) = A(3, 265536 − 3) = 22
65536

− 3 = 22
22

22

− 3

The general form for A(4, n) is this: A(4, 0) = 22
2 − 3, A(4, 1) = 22

22 − 3, and in general, each time we
increase the value of n, the height of the tower of exponents of 2 increases by 1. If we denote by T (n) the
value of a tower of exponents of height n, where all the exponents are 2, then A(4, n) = T (n+ 3)− 3:

m\n 0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10
2 3 5 7 9 11 13 15 17 19
3 5 13 29 61 125 253 509 1021 2045

4 22
2 − 3 22

22 − 3 22
22

2

− 3 22
22

22

− 3 22
22

22
2

− 3 · · ·
If you’ve worked a bunch of these examples by hand, you can see the general pattern. The first number in
each row is the second number in the row above it. Each successive number in a row is found by looking
at the previous number and going that many steps ahead in the row above.

The fifth row thus begins with A(5, 0) = 65533. The second number, A(5, 1) requires that you evaluate a
tower of exponents of 2 having height 65536, et cetera. We can convert this fantastically rapidly growing
function of two variables into a single-variable function as follows: A(n) = A(n, n).

7 An Alternative Notation

If we examine the rows in the tables of values of Ackermann’s function, we can see a pattern of growth.
For Ackermann’s function, the rows always seem to involve 2 (multiplication by 2, powers of 2, towers
of powers of 2, et cetera). The other annoying thing about this function are the extra “−3” values that
appear in the equations.

Ackermann’s function is interesting for historical reasons, but if we’re simply interested in large numbers,
there’s a cleaner and more general way to represent this type of number. We’ll do it as follows, following
Knuth and Conway:

5



nm = n+ n+ · · ·+ n (m copies of n)

n ↑ m = nnn · · ·n = nm (m copies of n)

n ↑↑ m = n ↑ n ↑ n · · ·n ↑ n (m copies of n)

n ↑↑↑ m = n ↑↑ n ↑↑ n · · ·n ↑↑ n (m copies of n)

n ↑↑↑↑ m = n ↑↑↑ n ↑↑↑ n · · ·n ↑↑↑ n (m copies of n)

As was the case with exponents, we will evaluate the expressions above from right to left. The first two
lines are fairly straight-forward, but let’s look at some examples from the third row:

3 ↑↑ 3 = 3 ↑ 3 ↑ 3 = 33
3

= 327 = 7625597484987

2 ↑↑ 4 = 2 ↑ 2 ↑ 2 ↑ 2 = 22
22

= 216 = 65536

It’s fairly clear that this third row corresponds to towers of exponents, but with the n and m, we can easily
specify towers of any number to any height.

The fourth row also behaves much like the Ackermann function:

3 ↑↑↑ 3 = 3 ↑↑ 3 ↑↑ 3 = 3 ↑↑ 7625597484987

which is an exponent tower of 3s of height 7625597484987. Let’s just call this giant number X .

It is difficult even to think about the next row:

3 ↑↑↑↑ 3 = 3 ↑↑↑ 3 ↑↑↑ 3 = 3 ↑↑↑ X

This will consist of a list of X 3s with two up-arrows between each pair. This huge number, 3 ↑↑↑↑ 3,
comes up again in Section 9.2.

Using the up-arrow notation above, the Ackermann numbers A(n) are something like 1 ↑ 1, 2 ↑↑ 2,
3 ↑↑↑ 3, 4 ↑↑↑↑ 4, and so on.

8 Still Larger Numbers

The notation above represents a number using two other numbers plus certain number of up-arrows be-
tween them. We might as well represent the number of arrows as a number as well.

The following notation, following Conway and Guy, does just that. Let:

a → b → c

represent the number a followed by c up-arrows followed by b. Thus 3 → 4 → 5 is the same as 3 ↑↑↑↑↑ 4.
Using this notation, the Ackermann numbers (as described in the previous section) look like n → n → n.

What we would like to do is describe what is meant by a chain of these right-pointing arrows. If there is
just one (as in n → m) this will mean nm. The situation with two is described above, and if there are
more than two, here is the meaning:

To evaluate
a → b → c → · · · → x → y → z + 1 (2)

check the value of z, If z = 0 then Equation 2 is the same as

a → b → c → · · · → x → y.

Otherwise the value depends on y. The following lines indicate the value for y = 1, 2, 3, et cetera:

y = 1 : a → · · · → x → z

y = 2 : a → · · · → x → (a → · · · → x) → z

y = 3 : a → · · · → x → (a → · · · → x → (a → · · · → x) → z) → z
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These numbers are huge. Consider 3 → 3 → 3 → 3:

3 → 3 → 3 → 3

= 3 → 3 → (3 → 3 → (3 → 3) → 2) → 2

= 3 → 3 → (3 → 3 → 27 → 2) → 2

= 3 → 3 → (3 → 3 → (· · · )) → 2

where the “(· · · )” represents a 27-deep nesting of (3 → 3). You can imagine that by the time this whole
thing is expanded, there will be an absolutely mind-boggling number of up-arrows.

9 Famous Large Numbers

In this section we’ll consider a few historically famous large numbers.

9.1 Skewes’ Number

When the author was a child, various math books claimed that Skewes’ number was the largest that had
ever come up in a “practical” sense, meaning that it came up in the proof of some important result.

If you don’t understand the following details, don’t worry too much, but basically the idea is this. Let
π(x) denote the prime number counting function. It is defined to be the number of prime numbers less
than or equal to x. So π(3) = 2, π(9) = 4, et cetera.

Let li(x) be the logarithmic integral function1:

li(x) =

∫ x

0

dt

ln t
.

Anyway, for “small” numbers, π(x) − li(x) < 0, but Littlewood proved that this is not always the case,
and that in fact, as x → ∞, the sign of the expression on the left changes infinitely often. Skewes’ number
is is an upper bound on the smallest x such that π(x) − li(x) ≥ 0, but Littlewood’s proof contained no
estimates for what that value of x might be.

Skewes, Littlewood’s student, proved in 1933 that this number must be less than:

ee
e79

≈ 1010
1034

,

Assuming that the Riemann hypothesis is true. This is sometimes called the “first Skewes’ number, and
was the largest value to appear in a mathematical proof for a long time. The second Skewes’ number is
even larger, and it was his best result assuming that the Riemann hypothesis is false. The second number
is approximately:

1010
101000

.

Much better bounds are known today, namely 1.397162914 × 10316, but Skewes was the first to find a
bound.

9.2 Graham’s Number

Graham’s number is more modern, and dwarfs Skewes’ number. It is also an upper bound, but as we shall
see, it is a terrible upper bound. Before we describe it, we need to take a short digression to graph theory.

1The function as described here has a singularity at x = 1 if x >= 1 so we assume that the value is the Cauchy principal value,
for all the nit-pickers out there:

li(x) = lim
ϵ→0

(∫ 1−ϵ

0

dt

ln t
+

∫ x

1+ϵ

dt

ln t

)
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A standard problem that appears in almost every introduction to graph theory is this:

Suppose there is a set of six people, and every pair either knows each other or does not know each other.
Show that there is either a set of three people, all of whom know each other, or a set of three people, none
of whom know each other.

The problem is usually solved by drawing a mathematical graph with six vertices that represent the six
people, and each pair of vertices is connected with a line. The line is red if the two people know each
other, and blue if they do not. The problem reduces to showing that there must either be a triangle with
all red lines or a triangle with all blue lines. Suppose that’s not the case. Consider any point P , and there
will be five lines connecting it to the other points. At least three of these lines are red, or three of them
are blue. Suppose there are at least three red lines connecting P to points Q, R and S. (The situation is
similar for three blue lines.) Then to avoid any pure red triangles, the lines QR, RS and SQ must all be
blue. But then we have a pure blue triangle QRS, so we have a contradiction.

With fewer than six people, it is possible to have no sets of three acquaintances or non-acquaintances,
so six are required. This number six is called a “Ramsay number” for this problem. It turns out that the
question can be turned around a little as follows: “What is the smallest number of people required so that
there is at least a set of n acquaintances or a set of n non-acquaintances? Whatever that number is would
be called the Ramsay number for n for this sort of problem. Even for this problem, for relatively small n,
the exact Ramsay number is unknown, but it is known that some such number exists.

There are hundreds of situations like this related to bounds on sizes of graphs with colored vertices such
that some condition holds, and that’s exactly what Graham’s number is. Here is the problem that defines
Graham’s number.

Given an n-dimensional hypercube, connect every pair of vertices to obtain a complete graph on 2n

vertices. Color these edges with two different colors. What is the smallest value of n for which every
possible coloring contains a single-colored complete sub-graph with 4 vertices that lies in a plane?

Again, if you don’t understand the exact problem, that’s unimportant; the key thing is to see that it is
similar to our first example, and this is just a Ramsay number for sub-graphs of size 4.

Graham proved that this number must be smaller than the number that we call Graham’s number, and that
number is huge. Using the up-arrow notation introduced in Section 7 (where we, in fact, looked at the
value of g1 as defined below) define:

g1 = 3 ↑↑↑↑ 3

g2 = 3 ↑g1 3

. . . = . . .

g64 = 3 ↑g63 3

The number G = g64 is Graham’s number. By the way, an exponent on the “↑” symbol means that the
symbol is repeated that many times. Using Conway’s notation, we have:

3 → 3 → 64 → 2 < G < 3 → 3 → 65 → 2.

What is sort of amazing about Graham’s number is that as of now, it is the best known bound for this
particular Ramsay number. But the best lower bound at the time this article was written is 11. That’s
right: the number 11, so the unknown true bound may be as small as 11, and as large as Graham’s number
G.

9.3 The Busy Beaver Function

Here’s one more interesting function that seems to generate absolutely huge numbers, but one of the
things that makes it so interesting is that there is no effective way to compute it. An effective computation
is one that is known to halt with the correct answer in a finite number of steps. The Busy Beaver function
is not one of these.
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Again, to describe the Busy Beaver function, we’ll need to take a short digression to talk about Turing
machines, first described by Alan Turing. We will describe here a very simple Turing machine.

Imagine a machine with a certain number n of internal states, one of which is the initial state, and an
additional “halted” state, so there are actually n+ 1 states. If the machine ever gets to the “halted” state,
computation ceases.

At any point, the machine is “looking at” one position on an arbitrarily long tape which initially contains
zeros in every position. Each position can contain either a zero or a one. The machine has a set of
instructions, and each instruction tells it, for every internal state what to do if it is looking at a zero or
looking at a one. The “what to do” consists of three things:

1. Whether to write a zero or one into the current position. (To leave the value at the position the
same, just write the value that is there.)

2. Whether to move left or right one position along the tape. (There has to be movement.)

3. What the new state of the machine will be after the move.

If there are n states, there are only a finite number of Turing machines. The instructions have to exist for
2n conditions, and there are 4n+4 actions that the machine can take for each of these conditions, so there
are at most (4n+ 4)2n machines.

Some of them halt instantly, and some run forever. As a machine that runs forever, imagine a machine
that always stays in the initial state, writes a one, and then moves to the left.

Let’s look at an example of a very simple Turing machine with just two states (three, including the “halted”
state). We will label the states with letters: A, B, C, et cetera, and we will use H for the “halted” state.
Let’s also assume that the machine begins in state A. We will label the movements R and L for “move
right” and “move left,” respectively, and we will indicate with a 0 or a 1 whether to write a zero or a one
at the current position before moving. Here is a simple two-state machine:

0 1

A 1RB 1LB
B 1LA 1RH

Here’s the interpretation: If the machine is in state A and sees a zero, write a one, move right, and
change to state B. A macine in state A that sees a one will write a one (in other words, leaving the tape
unchanged), will move left, and will change to state B. The second row similarly describes what the
machine will do if it is in state B and sees a zero or a one.

Let’s follow the action of this machine one step at a time.

start · · · 0 0 0 0 0A 0 0 0 0 · · ·
1 · · · 0 0 0 0 1 0B 0 0 0 · · ·
2 · · · 0 0 0 0 1A 1 0 0 0 · · ·
3 · · · 0 0 0 0B 1 1 0 0 0 · · ·
4 · · · 0 0 0A 1 1 1 0 0 0 · · ·
5 · · · 0 0 1 1B 1 1 0 0 0 · · ·
6 · · · 0 0 1 1 1H 1 0 0 0 · · ·

At the start, we have a tape filled with zeros, the machine in state A, and it is looking at one of the zeroes.
In the chart above, the state is written in the tape position the machine is looking at. Since the state is A
and there’s a zero in that slot, the table that describes the machine says to write a 1 and move to the right.
The second line in the table above shows the situation at that point. Follow along and see that after six
steps the machine finally halts and at that point has written four 1’s.

Here is an exercise to see if you understand how these machines work. Below is a three-state machine.
Use the same representation as above to see how many 1’s are written by this machine before it halts:
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0 1

A 1RB 1RH
B 0RC 1RB
C 1LC 1LA

Try to do this yourself, but there is a solution in Section 15.

Among all the machines with n states that do eventually halt, one of them must halt with the longest string
of ones. The length of that string of ones is the output for the Busy Beaver function of n, usually written
Σ(n).

Here are some known facts:

• Σ(1) = 1.

• Σ(2) = 4. This can be proved by enumeration of all possible machines.

• Σ(3) = 6. This is not easy to prove.

• Σ(4) = 13.

• For n > 4, nobody knows Σ(n). Σ(5) ≥ 4098, and Σ(6) ≥ 3.514× 1018276. As n increases, these
numbers grow astronomically.

Here is a web page that lists some results of the “Busy Beaver Competition,” including descriptions of the
record-holding machines:

http://www.logique.jussieu.fr/~michel/bbc.html

In section 12 we will give an example of a fairly simple machine (that could easily be converted into a
Turing machine) that generates surprisingly large numbers.

10 Goodstein’s Theorem

10.1 Hereditary base-k notation

To state Goodstein’s theorem, we first need to describe what is meant when we express a number in
hereditary base-k notation. Let us begin using base-2 as an example.

The usual way to write the number 143 in base-2 is:

143 = 27 + 23 + 22 + 2 + 1,

with the understanding that we could write 2 as 21 and 1 as 20.

But if we are trying to avoid using numbers larger than 2, we’d like to get rid of the 7 and the 3 that appear
in the exponents above, so we can always write 7 = 22 + 2 + 1 and 3 = 21 + 1:

143 = 22
2+2+1 + 22+1 + 22 + 2 + 1.

The expansion above represents 143 in hereditary base-2 notation.

There is nothing special about base-2; if we’re interested in base-k, we’d like to use the variable k only
when it requires an exponent, and otherwise use only values ranging from 0 to k − 1. Let’s try the same
number, 143, in hereditary base-3:

143 = 34 + 2 · 33 + 2 · 3 + 2 = 33+1 + 2 · 33 + 2 · 3 + 2.

If this idea isn’t perfectly clear, there will be many other examples in this section that display expansions
of numbers using various hereditary bases.
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10.2 Goodstein sequences

A Goodstein sequence begins with any integer g and is constructed as follows:

1. Set n, the current value of the sequence, to g. Set k, the current hereditary base, to 2.

2. if n = 0 the sequence terminates; otherwise:

3. Write the current element n of the sequence in hereditary base-k. The new value of n, and the next
element of the sequence, is obtained by changing all occurrences of k to k + 1 in this expression,
and then subtracting one from that value.

4. Increase the value of k by 1, and go to step 2 above.

Let’s step through an example: we’ll construct the first few terms of the Goodstein sequence beginning
with the number 4:

Term Hereditary notation Value Next term
1 22 4 33 − 1
2 2 · 32 + 2 · 3 + 2 26 2 · 42 + 2 · 4 + 2− 1
3 2 · 42 + 2 · 4 + 1 41 2 · 52 + 2 · 5 + 1− 1
4 2 · 52 + 2 · 5 60 2 · 62 + 2 · 6− 1
5 2 · 62 + 6 + 5 83 2 · 72 + 7 + 5− 1
6 2 · 72 + 7 + 4 109 2 · 82 + 8 + 4− 1
7 2 · 82 + 8 + 3 139 2 · 92 + 9 + 3− 1
8 2 · 92 + 9 + 2 173 2 · 102 + 10 + 2− 1
9 2 · 102 + 10 + 1 211 2 · 112 + 11 + 1− 1
10 2 · 112 + 11 253 2 · 122 + 12− 1
11 2 · 122 + 11 299 2 · 132 + 11− 1

To make sure you understand what is going on, you should verify by hand that the Goodstein sequences
beginning with 1, 2 and 3 are: {1, 0}, {2, 2, 1, 0} and {3, 3, 3, 2, 1, 0}, respectively. If you’d like, try to
show that the first few terms for the Goodstein sequence beginning with 5 are: {5, 27, 255, 467, 776, ...}.

The Goodstein sequence beginning with 4 increases, but apparently not too rapidly. To show what usually
occurs, let’s look at the sequence beginning with 19 and keep in mind that 19 is a fairly small number:

Term Hereditary form Value
1 22

2

+ 2 + 1 19

2 33
3

+ 3 7625597484990

3 44
4

+ 3 ≈ 1.3× 10154

4 55
5

+ 2 ≈ 1.8× 102184

5 66
6

+ 1 ≈ 2.6× 1036305

6 77
7 ≈ 3.8× 10695974

7 7× 87×87+7×86+7×85+···+7×8+7

+7× 87×87+7×86+7×85+···+7×8+6

+7× 87×87+7×86+7×85+···+7×8+5 + · · ·
+7× 88+2 + 7× 88 + 1
+7× 88 + 7× 87 + 7× 86 + 7× 85 + · · ·+ 7× 8 + 7 ≈ 6× 1015151335

8 7× 97×97+7×96+7×95+···+7×9+7

+7× 97×97+7×96+7×95+···+7×9+6

+7× 97×97+7×96+7×95+···+7×9+5 + · · ·
+7× 99+2 + 7× 99+1

+7× 99 + 7× 97 + 7× 96 + 7× 95 + · · ·+ 7× 9 + 6 ≈ 4.3× 10369693099

With even such a tiny number as 19 as the first term, this Goodstein sequence takes off like a rocket! What
is surprising, perhaps, is that even our first example where we began at 4 does get quite large. In fact it
eventually increases to 3 · 2402653210 − 1 after which it eventually decreases to zero, and thus terminates.
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What is even more surprising is that if we examine the Goodstein sequence beginning with any integer,
every one of them eventually converges to zero. For large starting values, this will take a long time and the
numbers in the sequence will get incredibly large before they start down. For example, in the sequence
beginning with 19, the eighth term is already larger than the largest value obtained by the sequence
beginning with 4.

We will not present a completely formal proof of Goodstein’s theorem which states that Goodstein se-
quences all terminate at zero, but we will provide an outline of the proof and some comments on it later,
in Section 10.3.

Assuming that Goodstein’s theorem is true: that all Goodstein sequences eventually terminate at 0, we
can define the following function: Let G(n) be the largest value obtained by the Goodstein sequence
that begins with n. Thus G(0) = 0, G(1) = 1, G(2) = 2, G(3) = 3, G(4) = 3 · 2402653210 −
1, and G(5) is ever so much more vastly larger than that. As with functions like Ackermann’s, what
we have constructed is a very rapidly increasing function. This one, however, grows much faster than
Ackermann’s. G(1000000) will be pretty big, and by now every reader of this article will be able to
produce much larger numbers, given that they can use this function G.

10.3 Proof of Goodstein’s theorem

This is not a formal proof, but if you know about infinite ordinal numbers and the fact that they are well-
ordered, you will be able to expand the outline below to a formal proof. If you don’t know about ordinal
numbers, the outline attempts to show you the basic ideas.

Unfortunately, the construction of the infinite ordinal numbers requires a much more powerful theory
(Zermelo-Fraenkel set theory) than what is usually required to prove theorems about the arithmetic of the
natural numbers. Usually all that is required to prove almost every theorem you know about the natural
numbers are the so-called “Peano postulates”.

What is doubly unfortunate is that it is impossible to prove Goodstein’s theorem from the Peano postu-
lates, although the proof of the fact that such a proof is impossible is far beyond the scope of this article.

10.4 The infinite ordinals

The ordinals are basically an extension of the natural numbers through infinite values. You can get to all
the natural number by starting with 0 and obtaining the next by adding 1 to the previous. If those are the
only things you’re allowed to do, then only the finite natural numbers are accessible:

{0, 1, 2, 3, 4, 5, . . .}.

To obtain the infinite ordinals, we also allow you to construct a new ordinal that is just larger than any
infinte sequence of ordinals previously obtained. The first infinite ordinal is called “omega” and is indi-
cated by the Greek letter of the same name: “ω”. Such ordinals are called “limit ordinals”, of which ω is
the first.

But once ω is allowed, since we are able to add one, we can obtain: ω+ 1, ω+ 2, ω+ 3 and so on. Since
ω + n is a valid ordinal for any natural number n, we can include the limit of ω, ω + 1, ω + 2, . . . , and
it will be ω + ω, which is usually denoted by ω × 2, the second limit ordinal. Then of course we can get
ω× 2 + 1, ω× 2 + 2, . . . , and the limit of that sequence of ordinals will be the third limit ordinal: ω× 3.

In a similar way, we can obtain the limit ordinals ω × 4, ω × 5, . . . , and we can then construct another
limiting sequence:

ω, ω × 2, ω × 3, ω × 4, . . . .

The limit of that will be ω × ω = ω2. Then we’re back to ω2 + 1, ω2 + 2, . . . , ω2 + ω, ω2 + ω + 1, . . . ,
ω2 + ω × 2, . . . , ω2 × 2, ω2 × 2 + 1, . . . , ω3, . . . , ω4, . . . , ωω , . . . , . . . .

Obviously, we’ve skimmed over a lot, but all this can be done in a very formal and logical way.
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10.5 Well-ordering of the ordinals

The amazing thing is that this set of infinite ordinal numbers is “well-ordered”, and that means that any
decreasing series of ordinals is of finite length: it is impossible to construct an infinite set of decreasing
ordinals, no matter how large a one you start with.

The idea of well-ordering is obvious if we just look at the natural numbers: If you begin with some
number and each successive number in the sequence is smaller, you must stop at zero after a finite number
of steps. If you start with a million and start stepping down, you can’t possibly take more than a million
steps. Obviously you can make a decreasing sequence of natural numbers as long as you want, but every
one is finite.

The infinite ordinals behave the same way. Let’s look at some examples. First, suppose you start “in-
finitely far along”, at ω itself. What is the next smaller ordinal in your sequence?

Well, ω is the first infinite ordinal, so every smaller ordinal is finite. Once you take that first step down,
to a million, or a billion, or to a googleplex, there are only a finite number of additional steps left to go.
When you take that one step down, it is enormous.

So ω won’t work as an ordinal from which you can make an infinite number of steps down. It’s clearly
pointless to start from ω + k, where k is finite, since after at most k steps you’ll be back at ω, and from
there it’s only a finite number of steps to the bottom. How about ω × 2?

Well, the first step down will take you to ω + k, where k finite, so that’s no good. There are similar
problems with ω × 3, ω × 4, or ω × k, where k is finite: it’s only a finite number of steps down to get rid
of each multiple of ω.

How about ω2? Well, the first step down has to have a largest term of the form ω × k, so that’s no good,
either. We have to be a little careful here, since here’s a number smaller than ω2:

ω × 1000 + ω × 999 + ...+ ω × 2 + ω + 1000000,

but the expression will only have a finite number of terms, and they must be knocked off, one by one.

In fact, you can sort of imagine an inductive proof2 that there are always a finite number of steps to the
bottom. Suppose that the ordinal κ is the first one from which there is an infinte descending sequence.
If κ is of the form λ + 1, then the first step down is to λ, from which there are only a finite number of
steps to the bottom or to a number even smaller than λ, from which there are also at most a finite number
of steps down. Similarly, if κ is one of the “limit ordinals”, the first step down will be to one from from
which there are only a finite number of steps to zero, so κ will share that property.

Try to figure out what might happen with ωω – a pretty large ordinal3. You can play around with this a bit
if you like, and perhaps that will make things clearer.

10.6 Proof of Goodstein’s theorem

Anyway, if you believe that the infinite ordinals are well-ordered, the proof that Goodstein sequences all
terminate at zero is not too hard. What we will do is replace every term of such a sequence in hereditary
notation by an ordinal number that is clearly larger than it. We will show that the sequence of ordinals
thus obtained is a decreasing sequence, so the Goodstein sequence will be dominated by a sequence of
ordinals that we know tends to zero, and hence the dominated sequence will also tend to zero.

The dominating ordinal is simple: just replace all occurrences of the base by ω. So for example, in our
example of the Goodstein sequence beginning with 19, the first few terms, and their dominating ordinals
are:

2This is actually not a proof by finite induction that you’re probably familiar with, but rather a proof by “transfinite induction”.
It is, however, very similar to the usual proofs by finite induction.

3Well, “pretty large” is optimistic: almost all ordinals, of course, are larger.

13



Term Hereditary form Ordinal
1 22

2

+ 2 + 1 ωωω

+ ω + 1

2 33
3

+ 3 ωωω

+ ω

3 44
4

+ 3 ωωω

+ 3

4 55
5

+ 2 ωωω

+ 2

5 66
6

+ 1 ωωω

+ 1

6 77
7

ωωω

On the next step, of course, we take a huge step down in the ordinals. The largest term in the exponent of
the bottom ω contains only finite powers of ω; not ωω . If you want to see what it looks like, just substitute
ω for every 8 in the expansion of term 7 that we did in the previous section for the Goodstein sequence
beginning with 19.

10.7 Behavior of Goodstein sequences

Every Goodstein sequence behaves similarly in the following sense: as long as the base itself appears
in the expansion with even a multiple of 2, the sequence will increase. That’s because when the base
increases for the next term, the increase will be multiplied by at least 2, and only 1 is subtracted.

Goodstein sequences finally reach a point where they have the following form:

B × 1 + k,

where B is the base and k is a (usually huge) constant. At this point, the sequence stays constant for k
steps, since at each step, although k is reduced by 1, B is increased by 1. Finally, the term looks like
B × 1 + 0 and after 1 is subtracted from that, the base will not appear in the expression; only a constant
will. After this, the sequence steps down to zero, one unit at a time.

So every Goodstein sequence increases (often incredibly rapidly at first), and keeps increasing until it
obtains the form above. Then it is constant for a long time, after which it reduces to zero by one at each
step.

11 Problem 5 from IMO 2010

This section discusses problem 5 on the International Mathematical Olympiad in 2010. There are a lot of
notes on this problem here:

http://michaelnielsen.org/polymath1/index.php?title=Imo 2010

Here is the text of the problem:

Problem: In each of six boxes B1, B2, B3, B4, B5, B6 there is initially one coin. There are two types of
operation allowed:

Type 1: Choose a nonempty box Bj with 1 ≤ j ≤ 5. Remove one coin from Bj and add two coins to
Bj+1.

Type 2: Choose a nonempty box Bk with 1 ≤ k ≤ 4. Remove one coin from Bk and exchange the
contents of (possibly empty) boxes Bk+1 and Bk+2.

Determine whether there is a finite sequence of such operations that results in boxes B1, B2, B3, B4, B5

being empty and box B6 containing exactly 20102010
2010

coins. (Note that ab
c

= a(b
c).)

11.1 Strategies

This problem admits a lot of strategies to see what might be going on. Probably the most obvious is to
look at smaller problems to see what can be achieved. Using the same rules but with fewer than six boxes
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is a good way to start. Here are some interesting things to explore:

• What is the maximum number of coins you can achieve in the largest-numbered box if you start
with 1, 2, 3, or 4 boxes? (Answers: 1, 3, 7, 28.) Here is the sequence to get to 28:

[1, 1, 1, 1]

[0, 3, 0, 3]

[0, 2, 2, 3]

[0, 2, 0, 7]

[0, 1, 7, 0]

[0, 1, 0, 14]

[0, 0, 14, 0]

[0, 0, 0, 28]

• What is the smallest number of coins you can leave in the largest-numbered box leaving zero coins
in all the other boxes? (Answers: 1, 3, 3, 0, 0, 0, . . ..)

• Can you work out sequences of moves that work with a limited number of adjacent boxes to convert
one sequence into another?

For the last item, it is nice to have some reasonable notation. For example, there is an obvious sequence
of moves to convert the configuration [n, 0] to [0, 2n], and only those two adjacent boxes are used. Simply
keep removing one coin from the first box and putting two into the next. The first box will empty and the
second will have twice as many coins in it.

Using the notation above, the two primitive operations can be expressed as:

[m,n] → [m− 1, n+ 2]

[m,n, p] → [m− 1, p, n]

(We always assume, of course, that no negative values are allowed, so in the examples above, m must be
1 or more. Either or both the p and n values in the second rule can be zero.)

When we write a result that involves a certain number of positions, we assume that only the positions in
that rule are affected. See, for example, the third and fourth items in the list of observations below.

Here are some observations.

• Once you use the coin in box 1, box 1 will stay empty forever. Similarly, if box k is the first box
that is non-empty, there is no way to get more coins into box k.

• If you have a situation like this: [n, 0, 0], then by simply applying the second rule, you can reduce
the n to any number smaller than n by simply swapping the two zeroes the appropriate number of
times. In fact, [n, k, k] can reduce n by an arbitrary amount by swapping the two k’s. Or [n, l, k]
can be reduced to [p, k, l] where p is less than n in an odd number of swaps and to [p, k, l] in an
even number of swaps.

• It is easy to see that [m, 0] → [0, 2m] is possible; simply apply the first rule repeatedly until the
first box is empty.

• If we have two empty boxes ahead of a non-empty box, we can see that either of the following is
possible: [m, 0, 0] → [0, 2m, 0] or [m, 0, 0] → [0, 0, 2m+1]. Do you see how?

• Continuing with the same idea, if we have three empty boxes we can do this: [m, 0, 0, 0] →
[0, 0, 22

m

, 0].
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• Consider the following steps using the previous rule:

[m, 0, 0, 0]

[m− 1, 2, 0, 0]

[m− 1, 0, 22, 0]

[m− 2, 22, 0, 0] = [m− 2, 2 ↑↑ 2, 0, 0]

[m− 2, 0, 22
2

, 0]

[m− 3, 22
2

, 0, 0] = [m− 3, 2 ↑↑ 3, 0, 0]

[m− 3, 0, 22
22

, 0]

[m− 4, 22
22

, 0, 0] = [m− 4, 2 ↑↑ 4, 0, 0]

Repeating until the end, we obtain:

[m, 0, 0, 0] → [0, 2 ↑↑ m, 0, 0].

• Similarly:
[m, 0, 0, 0, 0] → [0, 2 ↑↑↑ m].

Notice that if we do not have zeros in the positions following m in the examples above, the results will
simply be larger.

Using the ideas above, we can work out how to get a huge number starting with 5 boxes:

[1, 1, 1, 1, 1]

[1, 0, 0, 14, 0]

[0, 2, 0, 14, 0]

[0, 1, 14, 0, 0]

[0, 1, 0, 214, 0]

[0, 0, 214, 0, 0]

[0, 0, 0, 22
14

, 0]

[0, 0, 0, 0, 2 · 22
14

].

For huge numbers with six boxes, use one of our 5-box results:

[1, 1, 1, 1, 1, 1]

[1, 0, 0, 214, 0, 0]

[0, 2, 0, 214, 0, 0]

[0, 1, 214, 0, 0, 0]

[0, 1, 0, 2 ↑↑ (214), 0, 0]

[0, 0, 2 ↑↑ (214), 0, 0, 0]

[0, 0, 0, 2 ↑↑ (2 ↑↑ (214)), 0, 0]

[0, 0, 0, 0, 2(2↑↑(2↑↑(2
14))), 0]

[0, 0, 0, 0, 0, 2 · 2(2↑↑(2↑↑(2
14)))].

The last number above is fantastically large; much larger than the N = 20102010
2010

desired in the IMO
problem. To find a sequence that yields the result exactly is tricky: follow the link at the beginning of
this section for details. Since this article is concerned only with huge numbers, we stop here. A method
to obtain the exact number is to find a sequence of moves to arrive at [0, 0, 0,M, 0, 0], where M > N/4.
Then we swap the final two zeroes enough times to get M down to N/4, and finally move the N/4 to the
end with two doubling sequences.
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12 Are We Cheating?

In the previous sections we have presented some very large numbers in a very compact way, but since
each of these methods required a few paragraphs of explanation, aren’t we really cheating? Shouldn’t we
count the description of the method?

If you have a contest to “describe the largest number you can using n symbols”, you’ve got to say at the
beginning what the allowable symbols are. Otherwise you can imagine a many-page description of a huge
number where the last sentence is, “Call that number X .” Then the description is a single character, “X”,
and that’s not really fair.

One good way to structure such a contest might be to describe a virtual calculator that has certain buttons
on it, and the contest is something like, “Make the largest number in the display you can with at most n
button-presses.” If the calculator has a factorial button on it, then 9! might be the winning candidate for
the two-button-press version of the contest.

If the calculator is programmable, then you would need to count the strokes necessary to create the
program that is run with an additional button press, et cetera.

In any case, to end this article with an interesting example, imagine a calculator that has a bunch of
variables in it, (say, A, B, C, . . . , all of which are initially zero), and only allows the following sorts of
operations:

• A++ Increment the value of variable A by 1.

• A−− Decrement the value of variable A by 1 unless A = 0.

• A :: x If A ̸= 0 go to line number x; otherwise, continue to the next line.

Here is a 23 line program written in the language above. Try to figure out how large the numbers A, B,
C, D, and E get by the time the program terminates. It is fairly impressive, given that essentially the only
allowable operations are “add one”, “subtract one”, and “branch if non-zero”.

1: E ++ 9: A++ 17: D −−
2: E ++ 10: B −− 18: D :: 5
3: E ++ 11: B :: 8 19: D ++
4: E ++ 12: C −− 20: C −−
5: B ++ 13: C :: 5 21: C :: 19
6: A−− 14: C ++ 22: E −−
7: A :: 5 15: A−− 23: E :: 5
8: A++ 16: A :: 14

13 Even Larger Numbers

In a sense, all the numbers described in previous sections are tiny compared to what we will encounter
here. Up to this point, the text in this article contains fewer than 6000 words, and think of all the different
large numbers we have defined.

As a closing idea, consider the function F (n) which is defined to be “the largest integer than can be
defined in n or fewer English words.” This is obviously very sloppy, but the idea is not so bad. We could
define a perfectly formal language and make a definition like this one precise, but that requires a lot of
work. Let us just stick with English for now.

What is F (1)? Perhaps “googolplex”? It’s at least that big. We know that F (6000) is far more than
sufficient to describe all the numbers here so far, and it’s clear that far larger numbers could have been
defined. But with this F , we can do all the tricks again. What if G(1) = F (1), and G(n) = F (G(n−1)),
for example? We already know that G(2) is at least as big as the largest number that could be described
with a googolplex words.
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These numbers, of course, will not be computable in the same sense that the Busy Beaver numbers in
Section 9.3 are not. But they exist, and are guaranteed to be unimaginably huge.

It’s always good to keep in mind, however, what is sometimes called “The Frivolous Theorem of Arith-
metic”: Almost all numbers are very, very, very large. In fact, even considering all the particular huge
numbers listed in this article, almost all numbers are much, much larger than any of them. . . .

14 Pedagogical Notes

For younger students (in middle school, for example), it’s probably a bad idea just to write down the
definition of Ackermann’s function without an introduction.

This is a good time to do a review of functional notation. For example, just review some standard, simple
function definitions, emphasizing the idea that the definition provides a rule (or rules) for determining the
output given the input.

If, for example, the function is defined as:

f(x) = x2 − 3,

then to evaluate f for any particular input, you simply substitute the input value for the x on the right-hand
side of the equation above and evaluate it. In this example, you simply square the input value and subtract
3, so f(5) = 52 − 3 = 25− 3 = 22, or f(20) = 202 − 3 = 400− 3 = 397.

Ackermann’s function, unfortunatley, is more complex in two ways. First, it’s a function of two variables,
and second, it is defined recursively. Rather than jump right in, introduce the two ideas in two steps. First,
look at functions of more than one variable.

An example might be this: The ticket price at a movie theatre is $10 for an adult, and $6 for a child. What
we seek is a formula to tell us the admission cost for a mixed group of adults and children. Here is the
answer:

f(a, c) = 10a+ 6c,

where f(a, c) represents the admission cost for a group consisting of a adults and c children. Make it
clear why this is the correct function, and why, to determine the numerical output, you need to know both
the number of adults and children.

But even without complete information, you can simplify the formula with partial information. For exam-
ple, suppose you know that the group is going to consist of 4 adults, but you don’t yet know the number
of children. If we let c stand for the (as yet unknown) number of children, the total cost will be:

f(4, c) = 10 · 4 + 6c = 40 + 6c.

Using this simpler function, all you need to do is plug in the value of c to obtain the final cost.

The other type of function, a so-called “recursive function” is a little more interesting. Here is perhaps the
best example to use, since the function is already known to the students, but probably never in the form
shown below. The function F , defined below, is defined for all positive integers.

F (n) =

{
1 : if n = 1

n · F (n− 1) : if n > 1
(3)

The only time you know the answer immediately is if the input value happens to be zero: F (1) = 1. But
what is the value of F (4)? Well, you just follow the rule stated in the second line of Equation 3. The
input value, 4, is not equal to zero, so you must use the second rule:

F (4) = 4 · F (3). (4)

This doesn’t seem to help much since we don’t know the value of F (3), but if we have faith, we can just
reuse the definition. (A mathematician would say that we are using Equation 3 recursively.) To evaluate
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F (3) we first note that the input value, 3, is not zero, so F (3) = 3 ·F (2). Substituting this value for F (3)
into Equation 4 yields:

F (4) = 4 · (3 · F (2)), (5)

and we’re now left with the problem that we don’t know the value of f(2). But we can reuse Equation 3
yet another time to obtain F (2) = 2 · F (1), so the original Equation 4 now looks like:

F (4) = 4 · (3 · (2 · F (1))),

and now we’re in good shape because we know that F (1) = 1, so we have:

F (4) = 4 · (3 · (2 · 1)) = 4! = 24.

Try evaluating F (6) using the same method, but as soon as you get to:

F (6) = 6 · (5 · F (4)),

you can tell the kids that we don’t need to go farther since we already worked out the value of F (4),
which was 4! = 24. Thus:

F (6) = 6 · 5 · 4! = 6 · 5 · 4 · 3 · 2 · 1 = 6!

Finally, point oiut that for this recursive function at least (and this will usually be the case), the easiest
way to figure out what’s going on is not to start with large values, although that will work, but to start
with small ones. For this example, we know the value of F (1) immediately, so work on F (2) which we
find to be 2 · 1. Once we know the value of F (2), we can see that F (3) = 3 · F (2) = 3 · 2 · 1 = 3!. Then
we will see that F (4) can easily be evaluted in terms of F (3), and so on. After just a few steps like this,
it’s easy to see (and to prove, if you wish) that F (n) = n!.

Notice that the recursive definition is in some ways nicer than the usual formula for n!:

n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1,

since we never need to write the somewhat vague “· · · ”.

In any case, after this introduction, you can look at the more complicated Ackermann’s function which is
both a function of two variables and recursive.

15 Turing Solution

Here is the simulation for the following Turing machine. This machine, in fact, is an example of a three-
state machine that achieves the longest row of 1’s before halting. Here’s the machine:

0 1

A 1RB 1RH
B 0RC 1RB
C 1LC 1LA

And here’s the simulation:
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start · · · 0 0 0 0 0A 0 0 0 0 · · ·
1 · · · 0 0 0 0 1 0B 0 0 0 · · ·
2 · · · 0 0 0 0 1 0 0C 0 0 · · ·
3 · · · 0 0 0 0 1 0C 1 0 0 · · ·
4 · · · 0 0 0 0 1C 1 1 0 0 · · ·
5 · · · 0 0 0 0A 1 1 1 0 0 · · ·
6 · · · 0 0 0 1 1B 1 1 0 0 · · ·
7 · · · 0 0 0 1 1 1B 1 0 0 · · ·
8 · · · 0 0 0 1 1 1 1B 0 0 · · ·
9 · · · 0 0 0 1 1 1 1 0B 0 · · ·

10 · · · 0 0 0 1 1 1 1 0 0C · · ·
11 · · · 0 0 0 1 1 1 1 0C 1 · · ·
12 · · · 0 0 0 1 1 1 1C 1 1 · · ·
13 · · · 0 0 0 1 1 1A 1 1 1 · · ·
14 · · · 0 0 0 1 1 1 1H 1 1 · · ·
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