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1 Definitions

A matrix (plural: matrices)s simply arectangulaarrayof “things”. For now, we’ll assumehe“things” arenumbers,
but asyou go onin mathematicsyou’ll find thatmatricescanbearraysof very generabobjects.Prettymuchall that’s
requiredis thatyou be ableto add,subtractandmultiply the“things”.

Here are someexamplesof matrices. Notice thatit is sometimesusefulto have variablesasentries,aslong asthe
variablesrepresenthe samesortsof “things” asappeaiin the otherslots. In our exampleswe’ll alwaysassumehat
all the slotsarefilled with numbers.All our examplescontainonly real numbers but matricesof complex numbers
arevery common.

; ;1 i (1 4z 17) (z y 2z w)
1 -3 _9 2 z+y 7 -19
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Thefirstexampleis asquare3 x 3 matrix; thenext isa2 x 4 matrix (2 rows and4 columns—ifwe talk abouta matrix
thatis “m x n” we meanit hasm rows andn columns). Thefinal two examplesconsistof a singlecolumnmatrix,
andasinglerow matrix. Thesefinal two examplesareoftencalled“v ectors”—thdfirst is calleda“columnvector”and
theseconda “row vector”. We’'ll useonly columnvectorsin thisintroduction.

Oftenwe areinterestedn representing generalm x n matrix with variablesin every location,andthatis usually
doneasfollows:

11 ai2 @13 G1n
G21 Qg2  G23 G2n
Am1 Am2  Am3 ot Gmn

Thenumberin row ¢ andcolumny is representeddy a;;, wherel < i < m andl < j < n. Sometimesvhenthereis
no questiomaboutthe dimensionof a matrix, the entirematrix cansimply be referredto as:

(aij) -

1.1 Addition and Subtraction of Matrices

As long asyou canaddandsubtracthe “things” in your matricesyou canaddandsubtractthe matricesthemseles.
Theadditionandsubtractioroccursin the obviousway—elemenby element.Herearea coupleof examples:

1 3 7 3 2 1 4 5 8
2 6 —4|+[55 3 —e|=[75 9 -—-4-—¢
2 15 7 2 5 2 4 20 w42



1 3 7 3 2 1 -2 1 6
2 6 —4|—-[55 3 —e|=[-35 3 e—4
2 15 « 2 5 42 0 10 #—+2

To find whatgoesin row i andcolumnj of thesumor difference justaddor subtracthe entriesin row ¢ andcolumn
7 of thematricesbeingaddedor subtracted.

In orderto make sensebothof thematricesn thesumor differencemusthave the samenumberof rows andcolumns.
It makesno sensefor example,to adda2 x 4 matrixto a3 x 4 matrix.

1.2 Multiplication of Matrices

Whenyou addor subtractmatricesthetwo matricesthatyou addor subtracimusthave the samenumberof rows and
the samenumberof columns.In otherwords,bothmusthave the sameshape.

For matrix multiplication, all thatis requiredis that the numberof columnsof the first matrix be the sameasthe
numberof rows of the secondmatrix. In otherwords,you canmultiply anm x k& matrix by a k& x n matrix, with
them x k matrix on the left andthe & x n matrix on the right. The exampleon the left belov represents legal
multiplicationsincetherearethreecolumnsin theleft multiplicandandthreerowsin theright one;theexampleonthe
right doesnt make sense—théeft matrix hasthreecolumns but the right onehasonly 2 rows. If the matriceson the
right werewrittenin thereverseorderwith the2 x 3 martixontheleft, it would represenavalid matrix multiplication.

1 3 5

47217 100011
37 011

91671 010213
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Sonow we know whatshape®f matricesit is legalto multiply, but how do we do the actualmultiplication? Hereis
themethod:

If we aremultiplying anm x k matrix by a k& x n matrix, theresultwill beanm x n matrix. The elementin the
productin row ¢ andcolumnj is gottenby multiplying termwiseall the elementsn row : of the matrix on theleft by
all theelementsn columnj of the matrix ontheright andaddingthemtogether

Hereis anexample:

1 3 2 4 11 32 59
5 0 7 6 10 = 55 118
6 9 8 5 9 118 228

To find whatgoesin thefirst row andfirst columnof the product,take the numberfrom thefirst row of the matrix on
theleft: (1, 3,2), andmultiply them,in order, by the numbersn thefirst columnof the matrix ontheright: (4,6, 5).
Addtheresults:1-4+3-6+2-5 =4+ 18 + 10 = 32. To getthe 228in the third row andsecondcolumnof the
product,theusethe numbersn thethird row of theleft matrix: (6,9, 8) andthe numbersn the secondccolumnof the
right matrix: (11,10,9) toget6- 11 +9-10+8-9 = 66 + 90 + 72 = 228.

Checkyour understandindy verifying thatthe otherelementsn the productmatrix arecorrect.
In generaljf we multiply ageneralm x k matrixby agenerak x n matrixto getanm x n matrix asfollows:

a11 a2 - OG1g bin bz - bip C11 Ciz2 -+ Cin
a21 Q22 - G2f bar b2 - boy C21 Cog -+ Cop
am1 Gm2 " Amk bkl bk2 ot bkn Cml Cm2 " Cmn



Thenwe canwrite ¢;; (thenumberin row ¢, columny) as:
k
Cij = Z aipbpj.
p=1

1.3 Square Matrices and Column Vectors

Although everythingabove hasbeenstatedin termsof generalrectangulamatrices for therestof this tutorial, we’ll

consideronly two kinds of matrices(but of any dimension):squarematrices,wherethe numberof rows is equalto
the numberof columns,and column matrices,wherethereis only one column. Thesecolumn matricesare often
called“vectors”,andtherearemary applicationsvherethey correspondxactly to whatyou commonlyuseassetsof
coordinategor pointsin space.In the two-dimensionak-y plane,the coordinateg1, 3) represent point thatis one
unit to the right of the origin (in the directionof the z-axis), andthreeunits above the origin (in the directionof the
y-axis). Thatsamepoint canbe written asthe following columnvector:

1
)
If you wish to work in three dimensions,you’ll needthree coordinatesto locate a point relative to the (three-

dimensional)origin—an z-coordinate,a y-coordinate,and a z-coordinate. So the point you'd normally write as
(z,y, z) canberepresentetly the columnvector:

Quite oftenwe will work with a combinationof squarematricesandcolumnmatrices,andin thatcase|f the square
matrix hasdimensiong: x n, thecolumnvectorswill have dimensiom x 1 (n rowsand1 column}..

1.4 Propertiesof Matrix Arithmetic

Matrix arithmetic (matrix addition, subtraction,and multiplication) satisfiesmary, but not all of the propertiesof
normalarithmeticthatyou areusedto. All of the propertiesbelow canbe formally proved,andit’s not too difficult,
but we will notdo sohere.In whatfollows,we’ll assumehatdifferentmatricesarerepresentetly uppercasdetters:
M, N, P, ..., andthatcolumnvectorsarerepresentely lower-casdetters.v,w,. ...

We will furtherassumehatall thematricesaresquaranatricesor columnvectors andthatall arethesamesize,either
n X n orn x 1. Further we'll assumehatthe matricescontainnumbergreal or complex). Most of the properties
listedbelow applyequallywell to non-squarenatrices assuminghatthe dimensiongnake thevariousmultiplications
andaddtions/subtractionsalid.

Perhapghe first thing to noticeis that we canalways multiply two n x n matrices,andwe canmultiply ann x n
matrix by a columnvector, but we cannotmultiply a columnvectorby the matrix, nor a columnvectorby anotherIn
otherwords,of thethreematrix multiplicationsbelow, only thefirst onemakessense Be sureyou understandavhy.

1 2 3 10 10 1 2 3 10 7
4 5 6 11 11 4 5 6 11 8
7 8 9 12 12 7 8 9 12 9

1we couldequallywell userow vectorsto correspondo coordinatesandthis corventionis usedin mary places.However, the useof column
matricesfor vectorsis morecommon



Finally, an extremelyusefulmatrix is calledthe “identity matrix”, andit is a squarematrix thatis filled with zeroes
exceptfor onesin the diagonalelementghaving the samerow andcolumnnumber).Here,for example,is the4 x 4
identity matrix:

1 0 00
0100
0010
00 01

Theidentity matrixis usuallycalled“ I” for any sizesquarematrix. Usuallyyou cantell thedimensionf theidentity
matrix from the surroundingcontext.

e Associatve laws:

(MN)P = M(NP) (MN)v = M(Nv)
(M+N)+P=M+(N+P) @w+v)+w=u+(v+w)

e Commutatve laws for addition:
M+N=N+M v+w=w-+v

e Distributive laws:

M(IN+P)=MN=EtMP (M£N)P=MP=ENP
Mv+tw)=MvtMw (M £ Nyp=MvxNv

o Theidentity matrix:
NI=IN=N Iv=v

Probablythe mostimportantthing to noticeaboutthe laws above is onethat’s missing—multiplicatiorof matricesis
notin generalcommutatve. It is easyto find examplesof matricesM andN whereM N # N M. In fact,matrices
almostnever commuteundermultiplication. Here's anexampleof a pair thatdon't:

1 1\ /1 0\ _ (2 1\, 1 0\ /1 1y _ (11

0 1/\1 1) \1 1)° 1 1\0 1/ \1 2/°
Sotheorderof multiplicationis very important;that’s why you may have noticedthe carethathasbeentaken sofar
in describingmultiplication of matricesin termsof “the matrix ontheleft”, and“the matrix ontheright”.

The associatie laws above are extremely useful,andto take one simple example,considercomputergraphics. As
we'll seelater, operationdik e rotation,translationscaling,perspectie, andsoon, canall berepresentethy a matrix
multiplication. Supposeyou wish to rotateall the vectorsin your drawing andthento translatethe results. Suppose
R andT arethe rotationandtranslationmatricesthat do thesejobs. If your picture hasa million pointsin it, you
cantake eachof thosemillion pointsv androtatethem, calculatingRv for eachvectorv. Then,the resultof that
rotationcanbe translated 7' (Rv), soin total, therearetwo million matrix multiplicationsto make your picture. But
theassociatie law tells uswe canjust multiply 7' by R onceto getthematrix TR, andthenmultiply all million points
by TR to get(T'R)v, soall in all, thereareonly 1,000,001matrix multiplications—oneto producel' R anda million
multiplicationsof T'R by theindividual vectors.That'’s quite a savings of time.

The otherthing to noticeis that the identity matrix behaesjust like 1 undermultiplication—if you multiply any
numberby 1, it is unchangedif you multiply any matrix by the identity matrix, it is unchanged.



1.5 Matrix Inversion

We notedthattheidentity matrix, I, hasthe propertythatif you multiply ary othermatrix by it (eitherontheright or
ontheleft), theresultis theoriginal matrix. It' s just like multiplying a numberby 1—it leavesthe numberunchanged.

In the arithmeticof realnumberswe have the conceptof aninversethatin somesensé'undoes”a multiplication. If
I multiply anumberby 5, | canundothat multiplicationwith anothemultiplicationby 1/5. We sometimesaythat5
and1/5 aremultiplicative inversesof eachother In this sectionwe’ll seethatsomethingsimilar cantake placewith
(some)matrices.

As a concreteexample we’ll look at the solutionto a systemof linearequations.

1.6 Systemsof Linear Equations

Let's take a look at a problemthat may seema bit boring, but in termsof practicalapplicationss perhapghe most
commonuseof matrices:the solutionof systemf linear equations.Following is a typical problem(althoughreal-
world problemsmay have hundredsof variables).

Solve thefollowing systemof equations:

z+4y+3z = 7
2z +5y+4z = 11
z—3y—2z = 5.

Thekey obsenationis this: the problemabove canbe corvertedto matrix notationasfollows:

1 4 3 T 7
2 5 4 y|l=1|11]. (1)
1 -3 -2 z 5

Thenumberdn the squarematrix arejust the coeficientsof z, y, andz in the systemof equations Checkto seethat
the two forms—thematrix form andthe systemof equationdorm—represengxactly the sameproblem.

Ignoring all the difficult details, hereis how suchsystemscanbe solved. Let M be the 3 x 3 squarematrix in
equation(1) above, sotheequatioriookslik e this:

z
Mly|=1[11]. (2)
z 5

Supposeve cansomehw find anothermatrix N suchthat VM = I. If we can, we can multiply both sidesof
equation(2) by N to obtain:

T T T 7
NMlyl=Ilyl=|y|=N|11],
z z z 5

sowe cansimply multiply our matrix N by the columnmatrix containingthe numbers7, 11, and5 to getour solution.

Without explainingwherewe gotit, thematrix ontheleft below is justsuchamatrix N. Checkthatthe multiplication
below doesyield theidentity matrix:

2 -1 1 1 4 3 1 00
&8 =5 2 2 5 4|=]010
-1 7 -3 1 -3 -2 0 01



Sowe just needto multiply thatmatrix V by the columnvectorcontaining7, 11, and5 to getour solution:

2 -1 1 7 8 z
8 -5 2 |(1u]l=11]|=]|y
-1 7 -3/ \5 -15 y

Fromthislastequationwe concludethatz = 8, y = 11, andz = —15 is asolutionto theoriginal systenof equations.
You canplug themin to checkthatthey doindeedform a solution.

Although it doesnt happenall that often, somtimesthe samesystemof equationsneedsto be solved for a variety
of columnvectorson the right—not just one. In that case,the solutionto every one canbe obtainedby a single
multiplicationby the matrix N.

Thematrix N is usuallywritten asM ~, called“ M -inverse”. It is a multiplicative inversein just the sameway that
1/3 istheinverseof 3: 3 - (1/3) = 1, and1 is the multiplicative identity, justas is in matrix multiplication. Entire
booksarewritten thatdescribemethod=of finding the inverseof a matrix, sowe won't go into thathere.

Remembethatfor numberszerohasno inverse;for matrices,it is muchworse—maw, mary matricesdo not have
aninverse.Matriceswithout inversesarecalled“singular’. Thosewith aninversearecalled“non-singular”.

Justasan example,the matrix on the left of the multiplication belon cant possiblyhave aninverse,aswe cansee
from thematrix ontheright. No matterwhatthevaluesareof a, b, . .. , i, it isimpossibleto getarything but zeroesn
certainspotsin the diagonal andwe needonesin all thediagonalspots:

1 00 a b c a b ¢
0 0O d e f]=10 00
0 0O g h i 0 0O

If the setof linearequationshasno solution,thenit will beimpossibleto invertthe associatednatrix. For example,
thefollowing systenof equationsannotpossiblyhave a solution,sincez + y + z cannotpossiblyaddto two different
numberdq7 and11) aswould berequiredby thefirst two equations:

z+y+z = 7
r+y+z = 11
z—3y—2z = 5.

Soolviously the associatednatrix belowv cannotbeinverted:

1 1 1
1 1 1
1 -3 -2

It is alsotrue (but we won't botherto proveit) thatif A andM —! area matrix andits inverse then:
MM '=M1M=1I

In otherwords,the“left inverse”is the sameasthe“right inverse”.

2 Computer Graphics and Linear Transformations

Somecomputerganonly draw straightlineson the screenput complicateddrawings canbe madewith along series
of line-drawing instructions.For example theletter“F” couldbedrawn in its normalorientationattheorigin with the
following setof instructions:



1. Draw aline from (0,0) to (0, 5).
2. Draw aline from (0, 5) to (3, 5).
3. Draw aline from (0, 3) to (2, 3).

Imaginethatyou have adrawing that'sfarmorecomplicatedhanthe“F” above consistingof thousandef instructions
similarto thoseabove. Let's take alook at thefollowing sortsof problems:

1. How would you corvertthe coordinatesothatthe drawing would be twice asbig? How aboutstretchedwice
ashigh (y-direction)andthreetimesaswide (z-direction)?

2. Couldyou draw themirror imagethroughthe y-axis?
3. How would you shift thedrawing 4 unitsto theright and5 unitsdown?

4. Couldyourotateit 90° counterclockwiseaboutthe origin? Couldyou rotateit by anangled counterclockwise
abouttheorigin?

5. Couldyourotateit by ananglef aboutthepoint (7, —3)?

6. Ignoringthe problemof makingthe drawing on the screenwhatif your “drawing” werein threedimensions?
Couldyou solve problemssimilar to thoseabove to find the new (3-dimensionaloordinatesfteryour object
hasbeentranslatedscaledyotated et cetera?

2.1 Scaling, Translation and Rotation

It turnsoutthatthe answerdgo all of the problemsabove canbe achiaved by multiplying your vectorsby a matrix. Of
coursea differentmatrix will solve eachone.Herearethesolutions:

Graphics Solution 1:

To scalein the z-directionby afactorof 2, we needto multiply all thez coordinatedy 2. To scalein they-direction,
we similarly needto multiply they coordinatesy the samescalefactorof 2. The solutionto scaleary drawing by a
factors, in thez-directionands, in they-directionis to multiply all theinput vectorsby a generalscalingmatrix as

follows:
(5 o)) -(0)
0 sy/ \y Syy )
To uniformly scaleeverythingto twice asbig, let s, = s, = 2. To scaleby afactorof 2 in thez-directionand3 in the
y-direction,let s, = 2 ands, = 3.

We'll illustrate the generalprocedurewith the drawing instructionsfor the “F” that appearectarlier The drawing
commandsredescribedn termsof a few points: (0,0), (0, 5), (3,5), (0,3), and(2, 3). If we write all five of those
pointsas columnvectorsand multiply all five by the samematrix (eitherof the two above), we’'ll getfive new sets
of coordinatedor the points. For example,in the caseof the secondexamplewherethe scalingis 2 timesin z and3
timesin y, thefive pointswill becorvertedby matrix multiplicationto: (0,0), (0, 15), (6,15), (0,9) and(4,9). If we
rewrite thedrawing instructionsusingthesetransformedoints,we get:

1. Draw aline from (0, 0) to (0, 15).
2. Draw aline from (0, 15) to (6, 15).
3. Draw aline from (0,9) to (6, 9).



Follow theinstructionsabove andseethatyou drav anappropriatelystretchedF”. In fact,dothesamethingfor each
of the matrix solutionsin this setto verify thatthe drawing is transformedappropriately Notice thatif s, or s, is
smallerthanl, thedrawing will be shrunk—notexpanded.

Graphics Solution 2:

A mirror imageis just a scalingby —1. To mirror throughthe y-axis meanshat eachz-coordinatewill bereplaced
with its negative. Here's a matrix multiplicationthatwill dothejob:

@ D6)-G)

To translatepoints4 to theright and5 unitsdown, you essentiallyneedto add4 to every z coordianteandto subtract
5 from every y coordinate.If you try to solve this exactly asin the examplesabove, you'll find it is impossible.To
corvinceyourselfit's impossiblewith any 2 x 2 matrix, considemwhatwill happerto the origin: (0,0). Youwantto
moveit to (4, —5), but look whathappensf you multiply it by any 2 x 2 matrix (a, b, ¢, andd canbe ary numbers):

a b\ /0y (0

c d/\0)  \0/"°
In otherwords,no matterwhata, b, ¢, andd are,the matrix will maptheorigin backto theorigin, sotranslationusing
this schemads impossible.

Graphics Solution 3:

Buttheresagreattrick?. For every oneof yourtwo-dimensionabectors addanartificial third componenof 1. Sothe
point (3,6) will become(3, 6, 1), theorigin will become(0, 0, 1), et cetera.The columnvectorswill now have three
rows, sothetransformatiommatrix will needto be3 x 3. To translateby ¢, in thez-directionandt, in they-direction,
multiply theartifically-enlagedvectorby a matrix asfollows:

1 0 iy T T+ 1,
01 ¢ yl=|y+ty
0 0 1 1 1

Theresultingvectoris justwhatyou want,andit alsohasthe artificial 1 on the endthatyou canjustthrow away. To
getthe particularsolutionto the problemproposedabove, simply let ¢, = 4 and¢, = —5.

But now you're probablythinking, “That’s a neattrick, but whathappengo the matriceswe hadfor scaling?Whata
painto have to corvertto the artificial 3-dimensionaform andbackif we needto mix scalingandtranslatior. The
nice thing is that we canalways usethe artifically extendedform. Justusea slightly differentform of the scaling
matrix:

sz 0 0 z Sz
0 s, O y| = | syy
0 0 1 1 1

In the solutionsthatfollow, we’ll alwaysadda 1 asthe artifical third component
Graphics Solution 4:

Corvinceyourself(by drawing afew examplesjf necessarythatto rotatea point counterclockwiseby 90° aboutthe
origin, you will basicallymake the original z coordinateinto ay coordinateandvice-versa.But not quite. Anything
thathada positivey coordinatewill, afterrotationby 90°, have anegativez coordinateandvice-versa.ln otherwords,

2|n fact,it's alot morethanatrick—it is really partof projectie geometry
3But in theworld of computergraphicsor projective geometryit is often usefulto allow valuesotherthan1—in perspectie transformations,
for example



thenew y coordinatds theold z coordinateandthenew z coordinatds thenegative of theold y coordinate Corvince
yourselfthatthe following matrix doesthetrick (andnoticethatwe’ve addedthe 1 asanartificial third component):

0 -1 0 z -y
1 0 O yl=1z=z
0 0 1 1 1

Thegenerakolutionfor arotationcounterclockwiseby ananglef is givenby thefollowing matrix multiplication:

cosf —sing 0 z zcosh — ysinf
sinf cos® 0 y| = | zsind+ycosb
0 0 1 1 1

If you've never seeranything lik e this before,you might considettrying it for a coupleof simpleangleslike§ = 45°
or # = 30° andputin thedrawing coordinatesor theletter“F” givenearlierto seethatit’'s transformedproperly

Graphics Solution 5:

Hereis wherethe power of matricesreally comesthrough. Ratherthansolve the problemfrom scratchaswe have
above, let’s just solwe it usingthe informationwe alreadyhave. Why not translatethe point (7, —3) to the origin,
thendo a rotationaboutthe origin, andfinally, translatethe resultbackto (7, —3)? Eachof thoseoperationscanbe
achievedby a matrix multiplication. Hereis thefinal solution:

1 0 7 cosf —sinf 0 10
01 -3 sinf cosf O 01 3 y
0 0 1 0 0 1 00 1 1

Notice carefullythe orderof thematrix multiplication. The matrix closesto the (z, y, 1) columnvectoris thefirst one
that’s appliedto it—it shouldmove (7, —3) to the origin. To do that,we needto translatez coordinatedy —7 andy
coordinatedy 3. Thenext operationto bedoneis therotationby anarbitraryangled, usingthe matrix form from the
previousproblem.Finally, to translatebackto (7, —3) we have to translaten the oppositedirectionfrom whatwe did
originally, andthe matrix on thefar left abose doesjustthat.

Remembethatfor arny particularvalueof 8, sin # andcos 8 arejustnumberssoif you knew the exactrotationangle,
you could just plug the numbersin to the middle 3 x 3 matrix and multiply togetherthe threematriceson the left.
Thento transformary particularpoint, therewould be only onematrix multiplicationinvolved.

To corvince yourselfthat we've got the right answey why not putin a particular(simple) rotation of 90° into the
matricesandwork it out?cos 90° = 0 andsin 90° = 1, sothe productof thethreematricesontheleft is:

10 7 0 -1 0 1 0 -7 0 -1 4
01 -3 1 0 0 01 3|=1[|1 0 -10
0 0 1 0 0 1 00 1 0 0 1

Try multiplying all the vectorsfrom the “F” exampleby the single matrix on the right above and corvince yourself
thatyou've succeedeth rotatingthe “F” by 90° counterclockwiseaboutthe point (7, —3).

Graphics Solution 6:

The answeris yes. Of courseyou’ll have to add an artificial fourth dimensionwhich is always 1 to your three-
dimensionakoordinatesbut theform of the matriceswill besimilar.

On the left below is the mechanisnfor scalingby s, sy, ands, in the z-, y-, and z-directions;on the right is a
multiplicationthattranslatedy ¢, t,, andt, in thethreedirections.

s, 0 0 O T 1 0 0 ¢ T
0 s, 0 O Y 01 0 ¢ Y
0 0 s, O z 0 0 1 ¢, z
0 0 0 1 1 000 1



Finally, to rotateby an angleof # counterclockwiseaboutthe threeaxes, multiply your vectoron the left by the
appropriateoneof thefollowing threematriceg(left, middle,andright correspondo rotationaboutthe z-axis, y-axis,
andz-axis:

1 0 0 0 cosf 0 sinf O cosf —sinf 0 O
0 cosf —sinf O 0 1 0 0 sinf cosf@ 0 O
0 sinf cosf O —sinf 0 cos@ O 0 0 10
0 0 0 1 0 0 0 1 0 0 01

2.2 Inversesof Transformations

Almost all the operationsabove canbe “undone”, andthe matrix operationthatundoeshem, not surprisingly is the
inverseof the matrix operationthat“does” them. Let’s take a simple example—translationWe know thatthe matrix
thattranslatedy a distancet,; in thez-directionandby ¢, in they-directionis this:

2
t

y
1

OO =
O = O

Froma geometricviewpoint, to undoa translationwe simply needto translatein the oppositedirection—namelyby
—t, and—t, in thez- andy-directions.As anexercise show thatin fact:

10 t\ (1 0 —t, 100
01 t|[lo1 —t]=[010
o0 1/\oo0 1 00 1

As long asneitherof the scalefactorss, ands, arezero,we canundoa scalingtransformatiorwith anotherscaling
matrix having factorsl/s, and1/s,. To undoarotationby anangled, simply rotateby —6.
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