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The concept of infinity is fascinating to most people, and asshall see, it is probably much more interesting
than you think.

One of the problems with infinity is that the term has diffén@reanings, depending on the application. It can be
used as a limiting value, as in expressions like the follgwin
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In a somewhat related way, it can be used as a limiting value:
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It can also be used as an artificial “point at infinity” to corofily the real numbers, or there can be an infinite
number of points at infinity to build models of projective gaetry in various dimensions.

All of the examples above, of course, require a bit of advdriagowledge (except, perhaps, for projective
geometry). But perhaps the way most people first think of ihiserms of listing things: “1, 2, 3, and go on
forever”, or as a way of counting things: “there are an inimiumber of integers. In this paper we’ll examine
these last two interpretations.

1 Counting Finite Sets

Before we plunge into what it means to “count” an infinite nenbf objects, let’s take a quick review of what

it means to count a finite number of objects. What does it mdamnwou say, “This set contains 7 objects”?

The starting point is usually to begin by saying what it mefanswo sets to be the same size. (Mathematicians
often say that the sets have the same “cardinality”, but W&t mean is that the sets are the same size. “Car-
dinality” is a slightly better word, since it refers only thet count. So a set consisting of three bacteria has the
same cardinality as a set consisting of three super-noitheugh it’s pretty easy to make an argument that the
latter set is larger, at least in some sense.)

Here’s the formal definition: Two setd, and B, have the same cardinality if there exists & 1 function f that
maps setd onto setB.

“fis1 — 1" means that the functioii never maps two elements df to the same element d#, and since we
said it maps “onto’B, every element oB is the image of some element af

This is really just a fancy mathematical way of saying that#hs some way to match up the elementd iwith
those inB so that each object iA corresponds to exactly one objectihand vice versa.

Generally, there are many, many ways to do this—there arg foactions that demonstrate that the cardinalities
of two sets are equal. Luckily, you just need to find 1.

For example, letd = {1,2,3} and letB = {a,b, c}. The following functionf does the trick (where we are
denotingf by a set of ordered pairs as described in the “Something frothiNg” talk. The (1, a)” in the set



means thaf maps 1 ta, or in other words, thaf (1) = a.):

f= {(1’ a)? (2’ b)? (3’ C)}

But there are in reality six different functions that work this case):

fi = {1a),(2,0),(3,0)}
fa = {(1,0),(3,0),(2,0)}
fs = {(2,0),(1,0),(3,0)}
fo = {(2,0),3,0),(1,0)}
fs = {B,0),(1,0),(2,0)}
fo = {(3,0),(2,0),(1,0)}

It should be clear that for two finite sets each witdifferent elements, there aré different1 — 1 functions that
will map one onto the other.

1.1 Cardinal Numbers

Of course it's nice to be able to tell if two sets have the saandinality, but it is nicer still to give that cardinality

a name, and so we do. The usual names are “zero”, “uno”, “dtre”, “quattro”, “cinque”, “sei”, ... (well, if
you're Italian, that is). Luckily, almost everybody agreesthe following notation: 0, 1, 2, 3, 4, ..., no matter
what language they speak.

In the “Something from Nothing” lecture, we defined the Naif natural numbers from scratch, and completely
in terms of set theoryN = {0,1,2,3,4,5,...}. But perhaps the nicest thing about the definition was that
each of the natural numbers is a set, and not only that; it & aish the “correct” number of elements (the set
corresponding to the numbercontains exactly. elements):

{

{0}

{0,1}

{0,1,2}

= {0,1,2,3}

= {0,1,2,3,...,(n—1)}
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You may also recall the very simple rule we defined to get tantlad number:
n+1=nU{n}.

This will be very important later. Notice also thatc (n + 1), and that, C (n + 1).

Now that we have a collection of cardinal numbers, we can @mpur sets with them (well, at least our finite
sets). Of course it has to be shown that each natural numbexditierentcardinality and so on, but that's not
too difficult. When we find one that matches up with our set, wevkhow big our set is.

Let’s introduce a notation for cardinality. K is a set, the#S stands for “the cardinality a§”, and it will be a
cardinal number. For examplg{a,b,c} = 3, #{1,3,5,7,...,99} = 50, and#7 = 7. (In the last example,
remember that 7 is just a sét= {0,1,2, 3,4,5,6}.)

We can compare cardinal numbers, of coueg®. < #7T means that the cardinality of sétis strictly smaller
than the cardinality of seéf. Mathematically this means that you can find a function thapsmall the elements



of S 1 — 1 to elements ofl’, but you cannot find such a function that maps to all the vainés. In other
words, you can find & — 1 function that maps' into 7", but you cannot find & — 1 function that maps onto
T. For example#{1,2,3} < #{1,2, 3,4} since no matter how you map the elementg b2, 3} into the set
{1,2, 3,4}, something in the latter set will be left out.

2 Infinite Cardinal Numbers

Notice that in our definition of when two sets have the samédipality, we said nothing about whether they were
finite or not. In fact the sel of natural numbers is certainly not finite, but we can celyatialk about sets that
have the same cardinality &5

We will need a cardinal number to represent the cardinafitjf,oand what is traditionally used for this ¥,
whereR (pronounced “aleph”) is the first letter in the Hebrew alpgtabThe fact that there’s a subscriptn

N, is a pretty clear indication that we will come across othediteal numbers in the future. In fadty is the
smallest infinite cardinal numbe; is the next largei, the next, and so dn So the notation introduced in the
last section can be extended easiN = N,.

Let's look at a few examples.

The set of all even natural numbei= {0,2,4,6, ...} is also clearly infinite, but it seems to have only half as
many elements as areli Surprisingly (perhaps), the séisandE have the same cardinality.

Here’s the proof: Lelf(n) = 2n, andf mapsN into E. It's easy to see that never maps two numbers to the
same number, and thgthas all ofE as its range. Thu¥ andE have the same cardinalitytN = #E = N,.

What if we add an element i to make a slightly larger set? Suppose we stick in an elemémat’'s not a
natural number to make the €8t = {,0,1,2,3,...}. What is the cardinality oN’? (To make it definite, let

a = {{{}}} which is not a natural number—in faet,= {1}.)

The answer is again that it has the same cardinalify.adere is a functiory from N to N’ that will do the trick:

a : x=0
f(x):{x—l x>0

Thus#N’ = Ng.

In both cases above, we had sets where one was a strict stiisetother:E ¢ N ¢ N, butE # N # N, So
one set can be larger than another (in the sense that it nerttithe elements of the other and some additional
ones), but it can be the same size (from the point of view ddioatity). This is a very important concept; read
this paragraph again.

Thus far, all the infinite sets we've looked at are the samea&X. Let’s see if we can find one that’s larger. A
natural place to look might be the rational numb@rs-the set of all fractions.

But again, it turns out that there are the same number ofratimumbers as there are natural numbers. We will
show that this is the case for the positive rational numizerd,it is not difficult to extend the argument to show
that the set of all rational numbers—positive, negativezeyo—can be matched with the natural numbers in a
1 — 1 manner.

We begin by making a two-dimensional “list” of all the (paa#) rational numbers. In fact, this list has more
entries than do the rational numbers because we've listgabssible representations of them—the list contains

1You may be amazed at what “and so on” actually means!



not only2/3, but also4/6, 6/9, 8/12, and so on:

1/1 1/2 1/3 1/4 1/5
2/1 2/2 2/3 2/4 2/5
3/1 3/2 3/3 3/4 3/5
4/1 4/2 4/3 4/4 4/5
5/1 5/2 5/3 5/4 5/5

Now, starting at the upper left corner, number the positiorikis two-dimensional table of fractions going back
and forth, advancing along the diagonal as follows:

0 1 5 6 14
2 4 7 13 16
3 8 12 17 25
9 11 18 24 31
10 19 23 32 40

If you don’t understand the numbering scheme, use your pendb a “connect the dots”: draw a line starting
at 0 and then going to 1, 2, 3, 4, 5, 6, and so on. You'll see ti@ptth is boustrophedontic. Also, make sure
you realize where the missing numbers in the list are (likerl®0, or 42).
So the functionf we are looking for that matches all the natural numbers watinspof natural numbers looks
like this:

f=A(0,1/1),(1,1/2),(2,2/1), (3,3/1), (4,2/2),(5,1/3),(6,1/4),(7,2/3),.. .}.

As we warned above, this isrékactlywhat is needed—a true mapping would match one integer ty eatonal
number that had not yet been listed. The following enumenadbes exactly that— aX” in the table indicates
that nothing is mapped to that particular fraction:

0 1 4 5 10
2 X 6 X 12
3 7 X 13 19
8§ X 14 X 23
9 15 18 24 X

With a numbering scheme like the one above, it is clear thiatdbssible to constructa— 1 mapping from the
natural numbers onto the positive rational numbers. It'&a axercise to convert this function to one that maps
the natural numbers— 1 onto the entire sep of rational numbers. Therefos#Q = N,.

But we're still not making any progress—we tried to find a Erget, and the rationals seemed like they might
be—nbut in fact the cardinality of the rationals is the samthascardinality of the natural numbers.

Let's try again. Let’s lef® be the set of all polynomials with natural number coeffig&nt
[P thus consists of all the polynomials that look like these:

1

2Note that it wouldn't help to make it be the set of all polynaisiwith rational coefficients since we already know thatefare the same
number of rational numbers as there are of natural numbers.




3+ 17

2% + 3z + 41

25 4 52t + 323 + 72 + 1212 + 11213
100020102 4 4a35eaE, 100020101 4 4 17, 4 4]

We'll allow polynomials with any number of terms, and wellirhp them all into one giant set. Surely this set
has more elements than the integers, right?

Nope—same number.

What follows is an amazingly simple way to map all the polyrmamabove into the integers so that nothing is
left out. It is all based on the idea of prime factorizatiorttod integers. (Our proof will work for polynomials
with non-negative coefficients. Again, it is no big deal tdesd it to the general case, but things are slightly
uglier.)

Recall that any natural number can be written in a unique wak@product of prime numbers. For convenience,
let's assign a nice series of names to the primgs= 2, p1 = 3,p2 = 5,p3 = 7, p4 = 11, p5 = 13, and so on.
Thus,p; is thei*™® prime number, where we begin numbering from zero.

Now, if ko, k1, k2, . .. is a series of integers where all but a finite number of thenzare, then every different
sequence of thi; represents a different integer of the form:

o0
ko, k1, k2, k3 k ki
poepy phipsept - = [ o
=0

Notice that we can run the infinite product above to infinitycg almost all thé; are equal to zero, so that almost
all of thepfi will be 1. And the really great thing is that for any different sequeeatk;, the product above will
generate a different integer, and all the integers are gégabby some series &f.

Let's write down the most general polynomial:
e .
ko + kl.fC + k2I2 + k3x3 —|— /{4564 —|— e Z l{iIl,
1=0

where all but a finite number of thg are equal to zero.

But doesn’tthis provide an exadt:- 1 mapping between the polynomials with coefficients in therenumbers
and the natural numbers themselves? Yes—so there are tieensanber of polynomials (of any degree) as there
are natural numbergtP = X,. We still have not succeeded in constructing a set or cait)itarger thanN.

2.1 A Larger Cardinal Number

Remember the axiom of the power set from the previous legtilirstates that if you start with any set, there
exists a set consisting of all of the subsets of that set. kamele, if the set you begin with iS = {0, 1, 2},
then the following set, consisting of all its subsets, ip@set:

P(S) = {{}, {0}, {1}, {2},{0,1},{0, 2}, {1,2},{0,1,2}}.

We use the notatio(S) to indicate the “power set &§”.

In general, ifS is a finite set of cardinality,, then the cardinality gP(S) is 2™. That’s because for every element
z of S, and every subsét C S, eitherx € T or ¢ T, and since that decision has to be made for every element
of S, the size of the power set2§. Check the example above to see that the cardinality@fl, 2}) = 23 = 8.
But there was nothing in the power set axiom that requireds#ido be finite. We can, for example, look at
P(N). How big is it? We will show thagtP(N) > #N.



How can we possibly do this? How do we show that no matter wivattfon you examine, it will not match up

the elements o with the elements oP (N)?
Here’s how it is done. Suppose that there is some way to matd¢haielements. We will show that whatever

scheme you use, something is left out.
The nice thing about subsets is that to identify the sub#ietpa have to know for each element in the original
set is whether it is in the subset or not. Thus, we can writerdawomplete description of a subsein the

following form:

|0123456789101112---
S|0110001001110---

Wherever there is a 1, the natural number is in the set; wketbere is a 0, it is not in the subset. So in the
example above, the sStcontains 1, 2, 6, 9, 10, 11, and perhaps some other entrienteyimber 12.

As a concrete example, the complete list of subsets of thie faeit{0, 1,2} that we considered above in this
form:

0 1 2

[0 0 o
{0} |1 0 0
{1} |0 1 0
{2} |0 0 1
{0,1} |1 1 0
{0,22 |1 0 1
(1,2 |0 1 1
{0,1,2} |1 1 1

If we want to list a series of subsets, we would form a tableetbing like the following, wheré&y, S1, Sz, et
cetera, are the sets. (For now, ignore the boxes surrousding of the numbers.) In this example, the sulSget
contains 1, 2, 6,9, 10, 11, ..S; contains 0, 1,4, 6,9, 11,12, ..., and so on.

0 1 2 3 4 5 6 7 8 9 10 11 12.--
S|[6] 1 1 o o 0 1001 1 1 O
Si| 1 o 0 1 0 1001 0 1 1
S| 1 1 1 1 1 1101 1 0 0O
S/ 0 1 0 0 0 001 1 0 1 O
S4{0 1 0o 0 o] o o001 0 1 O
S|/ 0 0o o o0 001100 1 0 1

Suppose there is some way to match up the natural numbersihitie subsets of the natural numbers. Then
there will be some function that maps every natural numkato some subsef,, of the natural numbersin such

a way that every subset is listed exactly once.

If this were possible, we could make a listing of the subsstmdhe table above where all the slots are filled
with 0 or 1. We will now show that no matter how the list is aigad, at least one of the subsets has been left
out. To illustrate, suppose the table above gives a funttiahworks. Consider all the elements on the diagonal
(they have boxes around them in the figure), and make a newtstihghat has a 1 wherever the diagonal is 0,
and a 0 wherever it is one. For the example absyewould look like this:

|0 1 2 3 4 5
S.|1 0 0 0 1 1

6



This S,,, is missing (the fn” subscript stands for “missing”) from the list. It couldpbssibly beS, because it
differs from.S, for element 0. Similarly, it couldn’t b&; since it differs fromS; for element 1, and so on. Thus,
no matter how you number the subsets, at least one of therbeuft out, so we know thagtP (N) > #N = Ry.

This method above can be used in other settings, and is ysadlitd “Cantor’s diagonalization method”, since
you go down the diagonal and change whatever you find thererg@gantor was the mathematician who did
much of the fundamental work with cardinal and ordinal nursl{and he happened to speak Hebrew, which
accounts for the Hebrew lett8ras part of the name of infinite cardinal numbers).

How much bigger is#P(N) thanR? Is#P(N) = X;, the next larger cardinal? Or are there cardinal numbers
betweenX, and#P(N)? The long answer is far too difficult to discuss Hereut the short answer (without
proof) is that the set-theoretic statement thd(N) = R, is undecidable using the axioms of Zermelo-Fraenkel
set theory. There is no way to prove that it is true, and no wagyrove that it is false. You can add it as an axiom
to the set of Z-F axioms, and if the axioms are consistent émgelves, they will continue to be consistent with
the addition of this as an axiom. But you can also add the rmyatf this statement as an axiom, and that is also
perfectly consistent.

The statement tha#P(N) = &, is called the “continuum hypothesis” because the cardinafithe collection

of subsets oN turns out to be the cardinality of the real numb&sand one often refers to the continuum of
real numbers, since they are packed together continuolasiyg ¢he real line.

In fact, if you read most explanations of set theory, youitifthat the first example given of a set with cardinality
larger than the natural numbers is the set of real numberspiidof is quite similar to what we did above. Here'’s
roughly how it goes.

First, we'll just show that the cardinality of a small parttbe reals is still larger than the cardinality of the
natural numbers—we will just look at the real numbersuch that) < x < 1. Every one of those numbers has
an infinite decimal expansion, for examglg2 = .500000..., 1/3 = .33333..., 1/7 = .142857142857 .. .,

T —3=.1415926535..., V2 — 1 = .4142135. .., and so on.

As before, we assume there is some way to number them all méthatural numbers, and we could form a list:

.50000000000000000000000000000000000000000000000000000000000 . . .
.33333333333333333333333333333333333333333333333333333333333 . ..
.14285714285714285714285714285714285714285714285714285714285 . ..
.14159265358979323846264338327950288419716939937510582097494 . . .
.41421356237309504880168872420969807856967187537694807317668 . . .

B oW N — O
R A A

and so on.

Then, to show that at least one real number was left out, gsmdb/diagonal and make up a new number that
differs in thei*" decimal place from the real number corresponding @@here we number the decimal places
from number zero). So if the above list were supposed to beptais we merely need to find a number that has
something other than a 5 in the zeroth slot, other than a 3afitét slot, other than a 2 in the second slot, and
so on. In fact, we could just add 1 to each unless it was a 9, inohwdase it would wrap back to zero. The first
five decimal places of a real number guaranteed to be misgimg the list above with that strategy would be
.64362.. . ..

In fact, if we had written the numbers not as decimal exparssibut as binary expansions, our proof would be
virtually identical with the proof using subsets, since Hieary expansions would just be series of zeroes and
ones.

A minor annoyance that complicates both of the above exafplthough it is not hard to fix) is that many num-
bers (in fact, infinitely many) have two different decimal finary) expansions. For examplg999999 ... = .4,

3Paul Cohen proved, using a method called “forcing”, that ti-called “continuum hypothesis” is independent of theeoaxioms of
Z-F set theory. His proof fills an entire book.



1314999999 ... = .1315, et cetera (where we assume, of course that the 9s continenefd. For one thing,
we must be certain that only one version is listed for eveay nrember on the right, and for another, that the
resulting infinite decimal is not one of the ambiguous oned,leence appearing elsewhere on the list.

In any case, it is true thatR = #P(N).

3 Still Larger Cardinals

Cantor’s diagonalization process can be used with any séhite or infinite, to show tha#:S < #P(S). In
other words, the collection of subsets of a given set alwagsehlarger cardinality than the cardinality of the
original set.

We have already seen thatSfis finite, then if#£S = n, then#P(S) = 2. We will simply use the same
notation for infinite cardinals, and we have shown above#at= 2%,

But the cardinality of the collection of all subsets®is bigger than the cardinality & itself, so we've got an
even larger cardinal, and there is no reason we cannot c@ntiis for as long as we want. For any cardinal that
exists, you can construct a larger one simply by taking itsgaset.

Thus we have an infinite collection of cardinal numbers:
Ro, Ny, Ng, N3, Ny, ...

So that must be all of them, right?
No!
Using the axioms of set theory, it is easy to show that the¥dhg is also a valid set:

{Ro, Ny, Vg, N3, Ny, ..}

And another axiom of set theory tells us that we can take thenuof all the elements of a valid set and obtain
another valid set, so

NoUN; URNs U ..
is also a valid sét
How big is it? Well, for every, it must be larger thal;, since we know that there are more thgn; elements
in it.
This is, in fact, the smallest “limit cardinal”. We can writeas:

Ry,

But you can see where this is going to lead—the power s&t.pfis larger still, and we can keep applying the
power set operations to the resulting sets, and then takeiibe of all of those, for a second limit cardinal. And
a third, and a forth, et cetera, an infinite number of timesll, Wy not take the union of all of those. Eventually,
we'll get to:

Ny, -

But why stop here? Continue &x,, Xx,, and so on. Then takéeir union. What is this:

NNOUNmUN}:zUNNSU...?

4The sharp-eyed reader will notice that we have cheatedeabitthere, and assumed that for each cardinal number walchave a
set of that size, in the same way that we had sets for all thte ftardinals, with the set “7” being a set of 7 elements. loissible to do this,
but in this paper we have not shown how. The section on ordimaibers (see section 4) will give some indication of how ighidone.



Itis obviously:
Ny, -

There is literally no end to the process. We can form:
NOa NNoa NNRO ) NN“NO’ NNRNR yoee
0

and then we can union all of them together, et cetera.

3.1 The Schoder-Bernstein Theorem

Although we will not prove it herg the Schroder-Bernstein Theorem shows, in a sense, ththieahinalysis
above makes sense.

We have already seen that it is difficult sometimes to constifunction that maps a set perfectly- 1 onto
another one. For example, our first numbering of the rat®hadl every possible version of every fractiap2,
2/4, 3/6, et cetera, in the table, and we had to go to some trouble tadyef the duplicates to show that there
was really an exact matching function.

The Schroder-Bernstein Theorem allows us to be lazy. & #aat if S andT" are any two sets (of any cardinality),
and if you can find a functiogf that mapsS 1 — 1 into (not necessarilpnto) 7', and you can find a functions
that mapsl’ 1 — 1 into (again, not necessariyntg) S, then#S = #7T'. In other words, the existence of such
functionsf andg guarantee the existence of another functichat mapsS 1 — 1 andontoT'.

4 Ordinal Numbers

If you paid attention your English language classes, younkthe difference between the cardinal numbers and
the ordinal numbers. The cardinal numbers are “one”, “tvidiree”, and so on, and the ordinal numbers are
“first”, “second”, “third”, and so on.

Mathematicians don’t bother with this distinction, andcgirwe usually write the numbers as “23” instead of
“twenty three”, for a mathematician, the cardinal numbees® 1, 2, 3, ..., and the ordinal numbers are 0, 1, 2,
3, .... And there’s another difference—English teacherd te start at 1 and mathematicians start at zero.

So they're the same, right? Well, no. All tfiaite ones are the same, but then there’s a difference. In thi®eect
we’ll look at the construction of the infinite ordinals.

The way that both English and mathematics use the ordinabetsand the cardinal numbers is similar, however.
The cardinal numbers are used to count things, and the drdinzbers are used to order things. Thus the “one”,

“two”, “three” versus “first”, “second”, “third” distinctbn in English makes good sense.

What we intend to do is follow the same general plan that we h&ed up to now, with a few hints taken from
how we treated the cardinal numbers. Once we had a definiteabmumbem, we could make the next one,
which we called # 4+ 1" by letting n + 1 = n U {n}. This works fine, and in the case of the finite numbers, it
can go on forever, but it will never get us to infinity—we caregemaking numbers that are larger and larger,
but every particular number we make is still finite. To gettte first infinite cardinal numbeR,, we needed to
somehow take the union of all the numbers up to that point:

No=0UlU20U3U4U---
Notice how this makes perfect sense:

g ={}u{otu{o,1}u{0,1,2} U{0,1,2,3}U---

5For a proof, see Patrick Suppe’s Book entitledxibmatic Set Theoty



In other words,
N =1{0,1,2,3,4,...} =N,
so the first infinite cardinalyy, is the same aX.

SinceRX, = N is the first infinite cardinal, we will see that it also makess®eto make it the first infinite ordinal,
and (again for reasons that will become clearer later on)willegive it a third name if we want to think of it
as an ordinal: we'll call itv—the Greek letter “omega”, sRy = N = w. Omega is the last letter of the Greek
alphabet, so “from alpha to omega” means “from the begintoripe end—omega is the end. As we shall see
later, this is quite a joke.

4.1 Constructing the Infinite Ordinals

If wis the first infinite ordinal, why not go ahead and make the pedinal as usuakv + 1 = w U {w}? In fact,
that’s just what is done.

As soon as we have + 1, we can construeb + 2: w + 2 = (w + 1) U {w + 1}. Similarly, we can construct
w+ 3, w + 4, et cetera.

How big arew + 1, w + 2, et cetera? In other words, what is the cardinality of thesg?sActually, we already
worked out the cardinality ab + 1 in section 2—we found the cardinality 8fU {a}, wherea is any object not
in N—it is just X.

Similarly, it is not hard to show tha#(w + 1) = #(w +2) = #(w +3) =--- = N,.

Since we have constructed, as sets; 1, w + 2, w + 3, and so on, we can union them all together to get:

wHlUw+2Uw+3U---=wx2,

where “x” can be interpreted as multiplication.

From there, it is a simple matter to continuedx 2 + 1, w x 2 + 2, et cetera. These can all be unioned together
to makew x 3. Similarly, we can make» x 4, w x 5, et cetera.

If we union all ofw, w x 2, w x 3, et cetera, we can getiox w = w?.

There is a nice way to visualize these ordifidlsBegin by imagining that each ordinal is represented byva r
of telephone poles. So the ordinal 5 is represented by Sheleppoles in a row, et cetera. This works fine for
any finite number, but if you would like to visualize it's an infinite line of poles, beginning at zero, and going
on forever. Since it's difficult to draw an infinite number b on a finite page, we’ll imagine them “drawn
in perspective”, disappearing toward the horizon. So Jted@e poles (corresponding to the ordinal number 3)
looks like this:

Thenw of them would look like this:

Given this visualization method, here are what 1, w + 2, andw + 3 look like:

5This is due to John Conway—see his book written with Richangt @ntitled “The Book of Numbets
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Continuing with a couple of other examples, here is what 2, w x 2 + 3, andw x 3 4 2 look like:

To add two ordinals together, you just draw the pictures t@xach other and see what the resulting picture
looks like. We must be a bit careful (and this is where theptetee pole example helps) in the order that we add
them. If you already have an infinite number of poles goingmthe horizon (numbered from zero on up), and
you add a pole in front of pole number zero (sort of like polenier—1), then it's really not going to look any
different from what you had before—it’s just an infinite nuenlof telephone poles starting from a fixed pole.
Thus, we havd + w = w. Here’s the picture you get by drawing dollowed by anw:

Itis just like the drawing forw except that we've drawn the perspective a little wrong.

w + 1, however, is clearly different—there’s a new pole placditetd the horizon. The new pole you placed has
nothing after it, while every pole in the original had something after it. It's easy to see that adding 2 or 3 or
even 1000000 poles in front af make no change in the general drawing:

24+ w=34w=1000000 + w = w,

but
w+2# w+ 3 # w+ 1000000 # w.

Thus ordinal arithmetic is not commutative—if and 5 are two ordinals, it is not necessarily the case that
a+ B =06+ a Sometimesitis2+5=5+2,0rw-+wx2=wx 2+ w, and sometimes it is not:
wH+1#14+w.

Sowhat is(w + 2) + (w x 2 + 3) + w? Draw them out and see:

which is clearly equal ta x 4, with a few extra poles that get sucked up by intermediates

Of course we've been a little sloppy—we've used the notatioh 2, but what does it mean? x 2 is 2 copies
of w, and2 x w is w copies of2. We know what two copies af look like—just two sets of poles disappearing
into the horizon, buiw copies of 2 just amounts to putting down 2 poles, then 2 mbex 2 more, et cetera,
times. S X w =w # w x 2

If we take the union ofv, w x 2, w X 3, w x 4, we clearly getv copies ofw, which we would write as» x w, or
asw?, looking something like this:

It would perhaps be even better if we drew each ofBeso that they tended to disappear into a second horizon,
et cetera:

| HHM\\M.. YNNI

But then, as before, we can lookat + 1, w2 + 2, ..., w2 +w,w? +w+1, ..., w2 +wx2,...,w>+wx3,
WP W =w? X2, w3, WX, W w0 o W
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Although we haven't proved it, all of the ordinals listed Iretprevious paragraph have the same cardinaliy:
This may seem wrong, but it's true. In fact, when we were lagkit our first examples of cardinal numbers, we
essentially proved a bunch of the ordinals above to haveaime £ardinality.

Look atw + 1. Isn't that like the sefa,0, 1,2, 3, ...} which we calledY’ in section 2? How about the rational

numbers)? A little thought should convince you th&tlooks a heck of a lot likev?. And how abouf, the set
of all polynomials with integer coefficients? Again, a ktthought will show you thdP looks just like

wHwr+wd =0,

The firstw is the constant polynomials; thé is the size of the polynomials of the form+b; thew? corresponds
to the set of polynomials of the forax? + bx + ¢, et cetera.

It begins to boggle the mind, doesn’t it? But let's do one lasggle before ending this paper—it's essentially
equivalent to what mathematicians call the “well-ordenqmmopciple”. Imagineanyordinal—as complex as you
want. Start from there, and count down. By counting down ism&imply writing a sequence of decreasing
ordinals—you don’t have to (and you can't) hit all of them. &¥ls truly mind-boggling is that no matter how
you choose to count down, your entire list has to be finitey Righ it and see!
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