
Geometry (Mostly Area) Problems
Tatiana Shubin and Tom Davis

September 12, 2014

Instructions: Solve the problems below. In some cases, there is not enough informa-
tion to solve the problem, and if that is the case, indicate why not. The problems are not
necessarily arranged in order of increasing difficulty. Many of the problems below are
modified versions of problems from various AJHSME (American Junior High School
Mathematics Examination) contests collected by Tatiana Shubin. If there is a (*) or
(**) in front of a question, that problem (or parts of it) are more difficult. Two stars is
harder than one star, et cetera.

1 Easier Problems

1. (AJHSME, 1986) Find the perimeter of the polygon below.

1010

77

2. (AJHSME, 1986) (*) In the figure to the left below, the two small circles both
have diameter 1 and they fit exactly inside the larger circle which has diameter
2. What is the area of the shaded region? In the figure on the right, again assume
that the larger circle has radius 2 and the three smaller circles are equal. What is
the area of the shaded region? What if there were n small circles (arranged in the
same way) and the large circle still has radius 2? What is the perimeter of each
of the regions? What happens to the area and perimeter of an n-circle drawing
as n gets large? (As a mathematician would say, “. . . as n approaches infinity?”)

3. (*) What is the area and perimeter of the shaded region in the figure below? This
time assume that the two smaller circles have different diameters, and that the
larger circle has diameter equal to 2.
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4. (AJHSME, 1990) The square below has sides of length 1. Other than the diago-
nal line, all the other lines are parallel to the sides of the square. What is the area
of the shaded region?

5. (AJHSME, 1990) The figure below is composed of four equal squares. If the
total area of the four is 100, what is the perimeter? If the perimeter is 100, what
is the area?

6. (AJHSME, 1990) Suppose that all of the corners of a cube are cut off (the figure
below illustrates the operation when a single corner is cut off). How many edges
will the resulting figure have?

7. (AJHSME, 1994) In the figure below (which is not drawn to scale), we have
̸ A = 60◦, ̸ E = 40◦, ̸ C = 30◦. Find the measure of ̸ BDC.

AA CC

EE

BB

DD

8. (AJHSME, 1994) All three squares below are the same size. Compare the sizes
of the shaded regions in each of the three squares.
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9. (AJHSME, 1994) (*) The perimeter of a square is 3 times the perimeter of an-
other square. What is the ratio of the areas of the squares? If the surface area
of a cube is 3 times the surface area of another cube, what is the ratio of their
volumes?

10. (AJHSME, 1994) The inner square in the figure below has area 3. Four semi-
circles are constructed on its sides as shown below. A new square, ABCD, is
constructed tangent to the semicircles and parallel to the sides of the original
square. What is the area of square ABCD?

AA BB

CCDD

11. (**) The inner square in the figure below has area 3. Four semicircles are con-
structed on its sides as shown below. A new square, ABCD, is constructed tan-
gent to the semicircles and perpendicular to the diagonals of the original square.
What is the area of square ABCD?

AA

BB

CC

DD

12. (AJHSME, 1995) In the following figure (not drawn to scale) the perimeter of
square I is 10 and the perimeter of square II is 20. What is the perimeter of
square III? What is the combined perimeter of the figure formed from all three
squares?

II

IIII
IIIIII
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13. (AJHSME, 1995) Three congruent circles with centers P , Q and R are tangent
to the sides of the rectangle in the figure below. The circle centered at Q has
diameter 4 and passes through points P and R. What is the area of the rectangle?

PP RRQQ

14. (AJHSME, 1995) In the figure below, ̸ A, ̸ B and ̸ C are right angles. If
̸ AEB = 40◦ and ̸ BED = ̸ BDE then what is the measure of ̸ CDE?

EE

DD

BBAA

CC

15. (AJHSME, 1995) In the figure below, the large square is 100 inches by 100
inches. Each of the congruent L-shaped regions account for 3/16 of the total
area of the square. What are the dimensions of the inner square?

16. (AJHSME, 1995) In parallelogram ABCD below DE and DF are the altitudes
from D to sides AB and BC, respectively. If DC = 12, EB = 4 and DE = 6
then DF =?

DD CC

AA BB

FF

EE

17. (AJHSME, 1996) In the rectangular grid below, the distances between adja-
cent vertical and horizontal points equal 1 unit. What is the area of the triangle
△ABC?

AA

BB

CC
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18. (AJHSME, 1996) Points A and B are 10 units apart. Points B and C are 4 units
apart. Points C and D are 3 units apart. If A and D are as close as possible, then
what is the number of units between them?

19. (AJHSME, 1996) In the figure below, O is the origin, P lies on the y-axis, R lies
on the x-axis and the point Q has coordinates (2, 2). What are the coordinates of
T such that the area of triangle △QRT is equal to the area of the square OPQR?
If S is the intersection of TQ and PO, what are the coordinates of T such that
the area of triangle △TSO is equal to the area of OPQR?

OO

PP QQ

RRTT

SS

20. (AJHSME, 1996) In the figure below, ̸ B = 50◦. The line AD bisects ̸ CAB
and CD bisects ̸ BCA. Find the measure of ̸ ADC.

AA CC

BB

DD

21. (AJHSME, 1997) What is the area of the smallest square that will contain a
circle of radius 4? What is the area of the largest square that will be inside a
circle of radius 4?

22. (AJHSME, 1997) In the figure below, what fraction of the square region is
shaded? Assume that all the stripes are of equal width.

23. (AJHSME, 1997) In the figure below, ̸ ABC = 70◦, ̸ BAC = 40◦ and
̸ CDE = ̸ CED. Find the measure of ̸ CED.

AA

BB CC
DD

EE
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24. (AJHSME, 1997) In the figure below, the sides of the larger square are trisected
and a smaller square is formed by connecting the points of trisection as shown.
What is the ratio of the area of the inner square to the area of the outer square?

25. (AJHSME, 1997) The cube in the figure below has eight vertices and twelve
edges. The segments shown with dashed lines that connect two of the cube
vertices but are not edges are called diagonals. How many diagonals does the
cube have?

26. The cube below is 3 cm × 3 cm × 3 cm and is formed of 27 identical smaller
cubes. Suppose that a corner cube is removed. What is the surface area of the
remaining figure? What if all eight corner cubes are removed? What if all the
cubes in the centers of the faces are removed (and the corner pieces remain)?

27. (AJHSME, 1997) The diameter ACE of the circle below is divided at C in a
ratio of 2 : 3. The two semicircles ABC and CDE divide the circular region
into an upper (shaded) region and a lower region. Find the ratio of the area of
the upper region to that of the lower region.

A

B

C

D

E

28. (AJHSME, 1998) In the figure on the left below, how many triangles are there?
(Some triangles may overlap other triangles.) How about in the figure on the
right?
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29. (AJHSME, 1998) In the figure below dots are spaced one unit apart, vertically
and horizontally. What is the number of square units enclosed by the polygon?

30. In the figure below dots are spaced one unit apart, vertically and horizontally.
What is the number of square units enclosed by the polygon?

31. (AJHSME, 1998) In the figure below find the ratio of the area of the shaded
square to that of the large square.

32. (AJHSME, 1998) In the figure below let PQRS be a square sheet of paper. P
is folded onto R and then Q is folded onto S. The area of the resulting figure is
9 square inches. Find the perimeter of the original square PQRS.

S R

QP

33. (AJHSME, 1998) A 4×4×4 cubical box contains 64 identical small cubes that
exactly fill the box. How many of these small cubes touch a side or the bottom
of the box?
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34. (AJHSME, 1999) What is the degree measure of the smaller angle formed by
the hour and minute hands of a clock at 10 o’clock?

35. (AJHSME, 1999) A rectangular garden 50 feet long and 10 feet wide is enclosed
by a fence. To make the garden larger, while using the same fence, its shape is
changed to a square. By how many square feet does this enlarge the garden?

36. (AJHSME, 1999) In the figure below six squares are colored, front and back,
(R = red, B = blue, O = orange, Y = yellow, G = green, and W = white). They
are hinged together as shown, then folded to form a cube. What color is the face
opposite the white face?

O

R

G

B

W

Y

37. (AJHSME, 1999) In the figure below ABCD is a trapezoid with AD = 16,
BC = 8, the altitude is 3, and AB = CD. Find the perimeter of ABCD.

A D

B C

38. (AJHSME, 1999) In the figure on the below ̸ B = 40◦, ̸ BED = 100◦ and
̸ ACD = 110◦. Find the measure of angle A in degrees.

AA

BB
CC

DDEE

39. (AJHSME, 1999) In the figure below ABCD is a square with sides of length 3.
The segments CM and CN divide the square into three regions that have equal
areas. How long is the segment CN?

A

M

B C

DN

40. (AJHSME, 1999) In the figure below △ACX is a right triangle with ̸ ACX =
90◦. Points B, D and F are the midpoints of the sides of △ACX . Similarly,
points E, G and I are the midpoints of the sides of △DFX . Continue dividing
and shading in the same way 100 times. Assume AC = 6 and CX = 8. To
three decimal places, what is the sum of the areas of all 100 shaded triangles.
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A B C

D

E
F

G

H
I

X

41. (AJHSME, 2000) In the figure below a 3×3 square is centered in a 5×5 square
with the sides parallel as shown. Find the area of the shaded region.

42. (AJHSME, 2000) A block wall 100 feet long and 7 feet high will be constructed
using blocks that are 1 foot hand and either 2 feet or 1 foot long (no blocks may
be cut). The vertical joins in the blocks must be staggered as in the figure below
and the wall must be even on the ends. What is the smallest number of bricks
required to build this wall? What is the largest number?

43. (AJHSME, 2000) In triangle △CAT below we have ̸ ACT = ̸ ATC and
̸ CAT = 36◦. If TR bisects ̸ ATC then what is the measure of ̸ CRT ?

C T

A

R

44. (AJHSME, 2000) In the figure on the below triangles △ABC, △ADE and
△EFG are all equilateral. Points D and G are the midpoints of AC and AE,
respectively. If AB = 4, what is the perimeter of the figure ABCDEFG?

9



AABB

CC

DD EE

FFGG

45. (AJHSME, 2000) In order for Martin to walk a kilometer (1000 meters) in his
rectangular backyard, he must walk the length 25 times or walk its perimeter 10
times. What is the area of Maartin’s backyard in square meters?

46. (AJHSME, 2000) A cube has edge length 2. Suppose that we glue a cube of
edge length 1 on top of the big cube so that one of its faces rests entirely on the
top face of the larger cube. Find the percent increase in the surface area (sides,
top and bottom) from the original cube to the new object made from the two
cubes.

47. (AJHSME, 2000) In the figure on the below ̸ A = 20◦ and ̸ AFG = ̸ AGF .
Find the size of ̸ B + ̸ D.

AA

BB

CC

DD

EE

FF

GG

48. (AJHSME, 2000) The area of the rectangle ABCD below is 72. If point A and
the midpoints of BC and CD are connected to form a triangle, what is the area
of that triangle?

D

A

C

B

2 Intermediate Problems

1. In the figure below a cross shape with 12 edges (the darker segments), each of
length 1, is inscribed in two squres ABCD and WXY Z. Find the area of each
of these two squares.
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AA BB

CCDD

WW

XX

YY

ZZ

2. The figure below shows a regular pentagon, an inscribed pentagram and the seg-
ments of the pentagram enclose a smaller pentagon. The perimeter of the inner
pentagon is 5 cm and the perimeter of the pentagram is 10x cm. Show that the
perimeter of the outer pentagon is 5x2 cm.

3. The rectangle ABCD has AB = 15 and AD = 10. P is the point inside the
rectangle for which AP = 10 and DP = 12. Find the angle DPC.

4. Triangle △ABC has AB = AC = 5 and BC = 6. From any point P , inside
or on the boundary of this triangle, line segments are drawn at right angles to the
sides; the lengths of these segments are x, y and z.

(a) Find the largest possible value of the total x+ y + z and find the positions
of P where this largest total occurs.

(b) Find the smallest value of the total x + y + z and find the positions of P
where this smallest total occurs.

(c) What if △ABC is a general (non-isosceles) triangle?

5. In triangle △ABC, ̸ ACB is a right angle, BC = 12 and D is a point on AC
such that AD = 7 and DC = 9. The perpendicular from D to AB meets AB at
P and the perpendicular from C to BD meets BD at Q. Calculate:

(a) The ratio of the area of triangle △BCD to the area of triangle △BAD.

(b) The ratio of the length of QC to the length of PD.

6. A square has one corner folded oer to create a pentagon. The three shorter sides
of the pentagon which is formed are all the same length. Find the area of the
pentagon a a fraction of the area of the original square.

7. A square is inscribed inside a quadrant of a circle of radius 1. Calculate the area
of the square.

8. In a triangle the length of one side is 3.8 and the length of another side is 0.6.
Find the length of the third side if it is known that it is an integer.
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9. Using a pen and a straight edge, draw on a square grid a square whose area is:

(a) twice the area of one square of the grid.

(b) 5 times the area of one square of the grid.

10. In the figure below find the area of the shaded region as a fraction of the area of
the entire regular pentagram.

11. Is it true that a laf liter bottle of Coke is proportional to a liter bottle of Coke,
i.e., one can be obtained from another by multiplying all the lengths by the same
factor?

12. Suppose that triangle △ABC has an area of 1. Plot points D,E and F so that A
is the midpoint of BD, B is the midpoint of EC and C is the midpoint of AF .
What is the area of △DEF ?

DD

EE

FF

CC

AA
BB

3 Harder Problems

In some of the questions that follow we will need to recall the meaning of the
term “convex”. A convex planar figure is the intersection of a number (finite or
infinite) of half-planes. The intersection of a finite number of half-planes is a
convex polygon. (Equivalently, a figure is convex if for any two points A and B of
the figure, the entier line segment AB belongs to the figure.

1. Suppose that ABCD is a convex quadrilateral. Extend its sides AB, BC, CD
and DA so that B is the midpoint of AB1, C is the midpoint of BC1, D is the
midpoint of CD1 and A is the midpoint of DA1. If the area of the quadrilateral
ABCD is 1, find the area of A1B1C1D1.

2. Let ABCD be a trapezoid with AD∥BC and let O be the point of intersection
of the diagonals AC and BD. Prove that the triangles △AOB and △DOC have
the same area.
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3. Let △ABC be a triangle and suppose that P is an arbitrary point of AB. Find a
line through P that divides △ABC into two regions of equal area.

4. Let ABCD be a convex quadrilateral. Find a line through the vertex A that
divides ABCD into two regions of equal area.

5. Two lines trisect each of two opposite sides of a convex quadrilateral. Prove that
the area of the part of the quadrilateral contained between the lines is one third
of the area of the quadrilateral.

6. Suppose that ABCD is a convex quadrilateral. Two points are given on each
of the four sides of this quadrilateral that trisect the sides: K and M on AB,
P and R on BC, N and L on CD and S and Q on DA. By the trisection
we have: AK = KM = MB, BP = PR = RC, CN = NL = LD
and DS = SQ = QA. Let A1 be the intersection of KL and PQ, B1 is the
intersection of MN and PQ, C! is the intersection of MN and RS and D1 is
the intersection of KL and RS. Prove that the area of A1B1C1D1 is 1/9 of that
of ABCD.

7. In a certain country, there are 100 airports and all the distances between them are
different. An airplane takes off from each airport and lands at the closest airport.
Prove that none of the 100 airports receives more than 5 planes.

8. n points are placed in a plane in such a way that the area of every triangle with
vertices at any three of these points is at most 1. Prove that all these points can
be covered by a triangle with an area of 4.

9. Is it possible to place 1000 line segments in a plane in such a way that every
endpoint of each of these line segments is at the same time an inner point of
another segment?

10. Suppose that points A, B, C and D are coplanar but no three are collinear. Prove
that at least one of the triangles formed by these points is not acute.

11. In a coordinate plane there are infinitely many rectangles. Vertices of every
rectangle have coordinates (0, 0), (0,m), (n, 0) and (n,m), where m and n are
positive integers (different for different rectangles). Prove that it is possible to
choose two of these rectangles so that one is completely covered by the other.

12. Prove that

(a) any convex polygon of area 1 can be covered by a parallelogram of area 2.

(b) a triangle of area 1 cannot be covered by a parallelogram of area less than
2.

13. (a) Suppose that there are four convex figures in a plane, and every three of
them have a common point. Prove that all four figures have a common
point.

(b) Suppose that there are n convex figures in a plane, and every three of them
have a common point. Is it necessarily true that all n figures have a common
point?

14. A number of line segments lie in a plane in such a way that for any three of them
there exists a line intersecting them. Prove that there exists a line intersecting all
these segments.
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15. Is it true that for every pentagon it is possible to find at least two sides such that
the pentagon belongs to the intersection of exactly two half-planes determined
by these sides?

16. Draw a polygon and a point P inside this polygon so that none of the sides is
completely visible from the point P .

17. Draw a polygon and a point P outside of this polygon such that none of the sides
is completely visible from the point P .

18. If a rectangle can be covered completely with 100 circles of radius 2, show that
it can also be covered by 400 circles of radius 1.

19. (a) Prove that every n-gon (with n ≥ 4) has at least one diagonal that is com-
pletely contained inside the n-gon.

(b) Find the least possible number of such diagonals.

(c) Prove that every polygon can be cut into triangles by non-intersecting di-
agonals.

(d) Suppose that a polygon is cut into triangles by non-intersecting diagonals.
Prove that it is possible to color the vertices of the polygon using three col-
ors in such a way that all three vertices of each of the triangles are different.

20. Is it possible to cover a 10× 10 “chessboard” by 25 1× 4 dominoes?
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4 Solutions: Easier Problems

1. Solution: 34. Ignoring the sides that are listed as having lengths 10 and 7, al-
though the size of the corner in the lower-right corner is unknown, the total
horizontal part of the remaining sides is 10 and the total vertical part measures 7.

2. For the figure on the left, if we subtract the areas of the two smaller circles
from the area of the large circle, the remaining shaded and unshaded parts of the
original circle must have equal areas. Thus the shaded part has half the area of
the remaining part, so it will be:

π · 22 − 2π · 12

2
= π.

The perimeter will be half of the total perimeter of the three circles, or:

4π + 2 · 2π
2

= 3π.

For the figure on the right (with three circles) the same arguments can be made.
The area will be smaller, but perhaps surprisingly, the perimeter will be the same.
To show that, and to answer the final questions about the same situation with n
circles, we’ll work out the result for arbitrary n and we can then simply substitute
n = 3 to find the corresponding areas and perimeters in that special case. (Note:
We can also check our algebra by substituting n = 2 and make sure that we
obtain the same results we did for the case with two circles.)

With n circles inside a large circle of radius 1, each will have radius 1/n. The
area of each small circle will thus be π/n2. However, there are n of them, so
the total area to be subtracted is n · (π/n2) = π/n. The area of the larger circle
is π · 12 = π, so the area of the shaded part will be half of π − π/n which is
(n−1)π

2n = n−1
2n π. As n gets large, the fraction n−1

2n gets very close to 1/2, so the
area of the shaded region gets close to π/2, which is half the area of the large
circle, which sort of seems reasonable.

The perimeters, however, do something different. A circle of radius 1/n has
perimeter 2π

n , and there are n of them, so the total perimeter of the n small
circles is 2π. The perimeter of the larger circle is also 2π, so the perimeter of the
shaded region would be half of 2π + 2π, or 2π—it doesn’t depend on n at all.

3. There is not enough information to calculate the area. You can see why by as-
signing variables to the two diameters (which need to add to 2) and when you
work out the area, you can see that it depends on the diameters. But it is also
obvious if you simply imagine that one of the two circles is tiny so the other
is almost as big as the surrounding circle, making the shaded area almost zero.
However, if you work out the perimeter of that shaded area, you’ll find that it is,
again, the same as in the previous problem, independent of the relative sizes of
the two circles.

4. Solution: 1/2. For each of the shaded areas, there is an equal-sized non-shaded
area on the other side of the diagonal line. That means that the shaded and non-
shaded areas are the same. The total area is 1 and it’s made of two equal areas,
so each of those areas is 1/24.
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5. If the total area is 100 and the squares are equal, each has area 100/4 = 25. That
means that each of the small squares is 5 × 5, so each has an edge-length of 5.
Eight of these edges make the perimeter, so the perimeter is 8 · 5 = 40.

If the perimeter is 100, it is made of eight equal-length square edges, so each edge
has length 100/8 = 25/2. Thus the area of each square is (25/2)2 = 625/4.
But the total area is made of four equal squares, giving a total area of 625.

A perhaps easier way to find the area in the second case once you’ve worked out
the first part of the problem is to note that the area of similar figures varies as the
square of the length. The new perimeter is 100 and the old one is 40 so the new
area must be (100/40)2 = (5/2)2 = 6.25 times the old area. The old area is
100, so the new one must be 100 · 6.25 = 625.

6. Solution: 36. Each time you cut off a corner, three edges are added (and none
disappear). There are 8 corners and 12 edges originally, so the answer is 12+3 ·
8 = 36.

Note that the problem is actually ill-formed. If large chunks are taken out of each
corner, then the cuts might overlap or touch, so almost any shape with 8 or fewer
faces could be formed, with a large variety of possible answers.

7. Solution: 50◦. By the exterior angle theorem, ̸ B = ̸ A + ̸ E. (If you don’t
know the exterior angle theorem, note that ̸ B plus its supplement is 180◦ and
since the three angles of a triangle add to 180◦ we can conclude the same thing.
We also know that ̸ B + ̸ C + ̸ BDC = 180◦, so a little arithmetic gives us
̸ BDC = 50◦.

8. Solution: all three shaded areas are the same; namely, 1/4 of the area of the
square. One way to see this is to divide each figure up into a bunch of identically-
shaped triangles or squares (which has already been done in figure II) and count
the number that are shaded. In figure I , for example, divide the square horizon-
tally and along the other diagonal to make 8 congruent triangles, two of which
are shaded, making an area of 2/8 = 1/4. Figure III can be divided by the
horizontal and vertical bisectors of the square to from 16 identical triangles, 4 of
which are shaded, making the area 4/16 = 1/4.

It’s also easy to see that the area of figure I is the same as that of figure II by
sliding the lower triangle in figure I up and to the right until it’s next to the other
shaded part, and forms a figure that’s identical (with a rotation) to figure II .

9. Solution: 9 : 1. If a perimeter is three times another, that means that all the sides
are three times as long. If the side of the smaller square has length L its area will
be L2. For a square with side length 3L, the area will be (3L)2 = 9L2, so the
ratio of the areas will be 9 : 1.

The question on surface area is more interesting. If the smaller square has six
faces each with area A, then the cube with surface area 3 times that will have
six square faces, each with area 3A. The length of the edge of the smaller cube
will thus be

√
A and of the larger cube,

√
3A. To obtain the volumes, we need

to cube the lengths of the sides. The smaller square’s volume will be A3/2 and
of the larger one, (3A)3/2 = 33/2A3/2. The ratio will be 33/2 = 3

√
3.

10. Solution: 12. The radius of each semicircle is half the length of the side of the
inner square, so the outer square, ABCD, has sides that are twice as long. If
you double the length of the side, you multiply the area by 4, so we obtain 12.
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To show this with algebra, if the side of the smaller square is L, the area is L2.
Doubling L to 2L makes the area (2L)2 = 4L2, or 4 times the smaller area.

11. Solution: 9/2 + 3
√
2. To find the area, we need to find the length of the sides of

the larger square. Draw a line straight across it from where two of the semicircles
touch the outer square. That line will pass through the midpoints of two adjacent
sides of the inner square. If the inner square has side length L, then the paths of
the line you drew through the semicircles will be two times the radius, for a total
of L. The diagonal part through the inner square will have length L/

√
2, so the

total length of the line will be L+ L/
√
2 = L(1 +

√
2/2). The ratio of the side

lengths of the two squares is (1 +
√
2/2), so the ratio of the areas is the square

of that, and since the smaller square has area 3, the area of the larger square is:

3 ·
(
1 +

√
2

2

)2

= 9/2 + 3
√
2.

12. To find the side length of a square, divide the perimeter by 4 (since the four sides
are equal-length). So the side length of square I is 2.5 and of II is 5. From the
diagram, the side length of square III must be 2.5 + 5 = 7.5. From this data,
we can find that the perimeter of III is 4 · 7.5 = 30 and the perimeter of the
combined figure is 40.

13. Solution: 32. The height of the rectangle is the diameter of the circles, and the
width is twice the diameter of the circles, so the area is 4 · 2 · 4 = 32.

14. Solution: 85◦. Triangle △BED is an isosceles right triangle, so its other two
angles are both 45◦. So ̸ AED = 45◦ + 40◦ = 95◦. Since the four angles of a
convex quadrilateral add to 360◦ and we know three of them: 90◦, 90◦ and 95◦

we can find that the fourth must be 85◦.

15. Solution: 50×50 inches. Since there are 4 identical L-shaped regions, their total
area must be 12/16 = 3/4 of the large square’s area, or 7500 square inches.
That leaves 2500 square inches for the inner square, so its side length must be√
2500 = 50.

Another way to see it is that once you know the area of the inner square is 1/4
that of the entire square, its corresponding lengths much be

√
1/4 = 1/2 of the

larger one and half of 100 is 50.

16. Solution: 7.2. The area of the parallelogram is the altitude DE = 6 times the
base AB = DC = 12, or 6 · 12 = 72. Looking at the altitude from a different
direction, DF is an altitude if the base is CB = AD. Since EB = 4, AE
must be 8 since the sum is 12. (Obviously, the picture is not drawn to scale.)
But △DEA is a right triangle with sides equal to 6 and 8. By the Pythagorean
theorem, The length of DA is

√
62 + 82 =

√
36 + 64 =

√
100 = 10, so 10 ·

DF = 72.

17. Solution: 1/2. There are a bunch of ways to do this:

(a) The result is instant using Pick’s theorem, which states that for any simple
lattice polygon, the area is given by the formula:

A = I +B/2− 1,

where I is the number of lattice points interior to the polygon and B is the
number on the boundary. In this case, I = 0 and B = 3, yielding an area
of 1/2.
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(b) A more straightforward method, perhaps the most obvious, is to take the
area of the entire square and to subtract off the areas of triangles and
rectangles that are not part of △ABC. The total area is 12, the rest of
the non-△ABC can be split easily into three triangles and one rectangle
having areas 6, 3, 1/2 (for the triangles) and 2 (for the rectangle formed
by drawing lines down and to the right from point B. Thus the area is
12− 6− 3− 1/2− 2 = 1/2.

(c) Another very nice method is to note that if BC is considered to be the
base, then any point on the line through A and parallel to BC would form
a triangle with the same area, since it has the same height. One such point
(call it A′) is the one immediately to the left of C in the diagram and it’s
obvious that the area of △A′BC is 1/2.

(d) Cavalieri’s principle states that:
Suppose two regions in a plane are included between two parallel lines in
that plane. If every line parallel to these two lines intersects both regions in
line segments of equal length, then the two regions have equal areas.
Using this rule, we can simply project our triangle in a suitable direction
to make another whose area is easier to compute. For our example, let’s
project △ABC down onto △AB′C ′ as pictured below:

C’C’AA

BB

CC

B’B’

It’s easy to calculate the height of B′ over the line AC ′ and that is 1/4. The
area of △AB′C ′ is thus 1/2.

(e) Another easy solution uses the following formula for the area of a simple
n-sided polygon where the coordinates of the vertices are known:

A =
1

2

[
(x0y1 − y0x1) + (x1y2 − y1x2) +

· · ·+ (xn−2yn−1 − yn−2xn−1) + (xn−1y0 − yn−1x0)
]
,

where the coordinates of the points, in counter-clockwise order, are given
by: (x0, y0), (x1, y1), . . . , (xn−1, yn−1).
We need to assign coordinates, so let’s let the coordinates of the lower-
left vertex be (x0, y0) = (0, 0) making the others (x1, y1) = (3, 2) and
(x2, y2) = (4, 3). The formula yields:

A =
1

2

[
(0 · 2− 3 · 0) + (3 · 3− 2 · 4) + (4 · 0− 0 · 3)

]
=

1

2
.

(f) We can also calculate the lengths of the sides using the Pythagorean theo-
rem and then apply Heron’s formula:

A =
√
s(s− a)(s− b)(s− c),

where a, b and c are the lengths of the sides of the triangle and s = (a +
b+ c)/2 is the semiperimeter.
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In our case, the Pythagorean theorem yields the three lengths: AB = c =√
13, BC = a =

√
2 and AC = b =

√
25 = 5, so s = (

√
13+

√
2+5)/2,

so the area is given by:

A =

√
1
2

(
5 +

√
2 +

√
13
)
·
(
1
2

(
−5 +

√
2 +

√
13
))

·(
1
2

(
5−

√
2 +

√
13
))

·
(
1
2

(
5 +

√
2−

√
13
)) ,

which, with some really ugly algebra that’s required to expand the product
above, yields A = 1/2.

(g) If we know one of the angles and the lengths of the two adjacent sides, we
can also find the area. In the figure, let the lengths of the sides opposite
vertices A, B and C be a, b and c as in the previous solution. The area is
given by:

A = (ab sinC)/2.

To find angle C we use the law of cosines:

cosC = (a2 + b2 − c2)/(2ab) = (2 + 25− 13)/(10
√
2) = 7

√
2/10.

We know that sinC =
√
1− cos2 C =

√
1/50, so the area is given by:

A = (5
√
2
√

1/50)/2 = 1/2.

(h) The cross product of two (3-D) vectors is a vector perpendicular to both
and whose length is the area of the parallelogram determined by the two
vectors. So if we add a z-component of 0 to each of two of our vectors and
take the cross product, the only component we need to calculate is the z
component of that, and divide by 2. If we take the two vectors in the wrong
order we’ll get the wrong answer but it will be the same size, only negative,
so we can take the absolute value of that for the parallelogram’s area. Then
divide by 2 for the area of the triangle.
So let’s do this, starting from point B. −−→BC = (1, 1) and −−→

BA = (−3,−2).
Take the cross-product:

(1, 1, 0)× (−3,−2, 0) = (0, 0, 1 · (−2)− (−3) · 1) = (0, 0, 1).

Thus the area is (the absolute value of) half the z-coordinate of the cross
product, or 1/2.

(i) Set up a coordinate system with point A at the origin and note that the
equations of the lines are:

AC : y = f(x) = 3x/4

AB : y = g(x) = 2x/3

BC : y = h(x) = x− 1

The area is specified by the following difference of definite integrals:

A =

∫ 4

0

f(x) dx−
∫ 3

0

g(x) dx−
∫ 4

3

h(x) dx.

Using standard integration techniques, we obtain:

A =
[3x2

8

]4
0
−
[x2

3

]3
0
−
[x2

2
−x

]4
3
= 6− 0− (3− 0)− (4− 3/2) = 1/2.
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(j) If you like to do line integrals, then you can apply Green’s Theorem (a
corollary to which) states that if C is a counter-clockwise path around the
boundary of an area, such that no vertical or horizontal line intersects the
boundary in more than 2 points, then the area enclosed by the curve C is
given by:

A =

∮
C

x dy − y dx.

This calculation is very similar to the one above.

There are, no doubt, other ways to calculate the area as well.

18. Solution: 3. This occurs when A,B,C and D are all on the same line in the
order ADCB.

19. The area of the square OPQR is 4, so to make a triangle with height 2 have
the same area, its base must have length 4. Thus the coordinates of T must be
(−2, 0).

The second question is trickier. Suppose T is x distance to the left of the origin.
Let y be the length of the segment SO. Then since triangles △SOT and △QRT
are similar, we have: y/x = 2/(2 + x), so y = 2x/(2 + x). The area of triangle
△SOT is thus: xy/2 = x2/(2 + x). Set this equal to 4 and we obtain the
quadratic equation:

x2 − 4x− 8 = 0.

If we solve for x, perhaps using the quadratic formula, we obtain x = 4(1+
√
3),

so the coordinates of T are (−4(1 +
√
3), 0).

20. Since the three angles of a triangle add to 180◦, we know that ̸ BAC+ ̸ BCA =
130◦. If we divide that equation by 2 on both sides we find that ̸ DAC +
̸ DCA = 65◦. So ̸ ADC = 115◦ since the three angles in △ADC also add to
180◦.

21. A square surrounding the circle of radius 4 must have a side of length 8 (the
diameter of the circle). Thus the area is 8 · 8 = 64. The diagonal of the largest
square that will fit inside such a circle is also 8. Using the Pythagorean theorem
we can conclude that the side length of such a square is 8/

√
2 and the area of

that square will be 32.d

22. If the stripe width is 1 then the side length of the square is 6 so its area is 62 = 36.
The areas of the shaded V-shaped areas are 3, 7 and 11, so the required fraction
is 21/36 = 7/12.

23. Solution: 35◦. Since we know ̸ ABC = 70◦ and ̸ BAC = 40◦ we can con-
clude that ̸ ACB = 70◦ since the three add to 180◦. Since it is supplementary
to ̸ ACB, ̸ ECD = 110◦. ̸ CDE, ̸ CED and 110◦ also add to 180◦ and
since the other two angles are equal, each, including ̸ CED, is equal to 35◦.

24. Solution: 5 : 9. The area ratios will be the same no matter how big the squares,
so assume that the large square has side length equal to 3. Then the side length
of the inner square is the hypotenuse of a right triangle with sides 1 and 2, so its
length is

√
12 + 22 =

√
5 by the Pythagorean theorem. The area of the larger

square is 32 = 9 and that of the inner square: (
√
5)2 = 5, so the required ratio is

5 : 9.
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25. Solution: 16. Each face has 2 diagonals for a total of 12 and there is only one in-
terior diagonal from each vertex. There are 8 vertices, but each interior diagonal
uses 2 of them so there are 4 additional interior diagonals, making a total of 16.

26. The original surface area of the cube is 9 · 6 = 54 cm2. Removing a corner cube
subtracts three faces, but adds three interior ones, so the surface area remains
unchanged. Doing the same for all eight corners does the same: has no effect on
the original cube’s surface area. On the other hand, when a face cube is removed,
five faces are introduced and one is removed for a net gain of four. Since there
are six faces, removing all the center face cubes will add 6 · 4 = 24 cm2 for a
total surface area of 54 + 24 = 78 cm2.

27. Solution: 3 : 2. The ratio of the areas will be independent of the original circle
size, so we choose a convenient radius for the outer circle; namely, 5. That will
make the radius of the semicircle ABC equal to 2 and of the semicircle CDE,
3.

Think of the area of the upper shaded region as a semicircle of the large circle
where we subtract off the area of the semicircle ABC and add the area of the
semicircle CDE. A similar result can be obtained for the lower region, or simply
subtract the area of the upper from the area of the entire circle. The area of the
large circle is 25π so the area of the large semicircle is 25π/2. The area of
semicircle ABC is 4π/2 and of the semicircle CDE, 9π/2. The area of the
upper (shaded) region is thus:

25π

2
− 4π

2
+

9π

2
=

30π

2
.

The area of the lower region is similarly:

25π

2
+

4π

2
− 9π

2
=

20π

2
.

The desired ratio is thus 3 : 2.

28. What makes this problem difficult is that it’s necessary to count triangles of every
size. In the figure on the left, there are 5. On the right, there are still the same 5
from the other figure, but the new lines add 8 more for a total of 13. One possible
way to reduce errors is to add the two new lines one at a time and see how many
new triangles are formed with the additions.

29. Solution: 6. The easiest way to see this is that there is basically a rectangle
of area 6 but with the addition and subtraction of identically-shaped triangular
regions.

30. Solution: 54. Either use the same reasoning as in the figure above, or note that
the lower figure is exactly the same as the upper one, but with width and height
multiplied by 3, so there will be 32 = 9 times the area of the figure in the previous
problem.

31. Solution: 1 : 8. If the larger square has side length 1, the smaller square has
side length 1/4 of the diagonal, or

√
2/4. The areas are the squares of these two

numbers; namely, 1 and 2/16 = 1/8, yielding a ratio of 1 : 8.

32. Solution: 24. Each fold cuts the area in half, so the original square’s area must
have been 36. Its side length was therefore

√
36 = 6 so its perimeter is 24.
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33. Solution: 52. The easy way to do this is to notice that there are a total of 4·4·4 =
64 small cubes. Of those, there’s a block of 2 ·2 ·3 = 12 of them that don’t touch
a side or bottom, so the answer is 64− 12 = 52.

A harder way to do it is to count the cubes on the sides and bottom directly, but
this is a bit tricky. There are 5 of the 2 × 2 cubes on the faces that are not on
edges or corners for a total of 20. There are 12 edges that contain 2 cubes for a
total of 24 more. Finally, there are 8 corners with one cube in each for a grand
total of 20 + 24 + 8 = 52 cubes.

34. Solution: 60◦. The difference between the two hands will be 2/12 = 1/6 of a
circle, and a full circle is 360◦, so the angle is (1/6) · 360◦ = 60◦.

35. Solution: 400 foot2. The original area is 10 · 50 = 500, and the perimeter of the
fence is 120. If the fence is arranged in a square, each side will be 30, so the area
of the larger garden will be 302 = 900. Thus the area is increased by 400 foot2.

36. Solution: Blue.

37. Solution: 34. The segment AD is 8 longer than BC, so if we form a right triangle
by dropping a perpendicular from B to AD it will form a right triangle with sides
3 and 4. By the Pythagorean theorem, the length of AB will be

√
32 + 42 = 5,

so the perimeter of ABCD is 34.

38. Solution: 30◦. We use the fact that the angles of a triangle add to 180◦ twice. In
△BED we can conclude that ̸ D = 40◦. Next, looking at △ACD we find that
̸ A = 30◦.

39. Solution:
√
13. By the symmetry of the figure, if we add the line segment CA

then △CAN will have half the area of △CND so the base AN must be half
of the base ND. Thus AM = 1 and BM = 2 so by the Pythagorean theorem,
CM =

√
22 + 32 =

√
13.

40. Solution: 8.00. If we take slides at DF , GI , and so on, we note that the shaded
area in each slice is 1/3 of the total area. Thus with 100 such slices, we will be
very close to 1/3 of the area of the entire triangle, which is (1/3) · 24 = 8.

41. Solution: 7. The width of the strip is 1, so its area is 7.

42. Solution: 353. We need 50 blocks to go 100 feet if they all are the longer blocks,
and 51 of them if there are shorter blocks at the end. We need 4·50+3·51 = 353
blocks.

43. Solution: 72◦. Since we know angles C and A, then the large angle at B is 72◦.
Bisecting it yields ̸ CTR = 36◦ and since the three angles of △CRT add to
180◦ we know that ̸ CRT = 72◦.

44. Solution: 15. AB = 4 so AD = 2 and EF = 1 (as well as the others of
similar lengths. The perimeter of the complex figure is the sum of the lengths of
AB,BC,CD,DE,EF, FG, and GA or 4 + 4 + 2 + 2 + 1 + 1 + 1 = 15.

45. Solution: 400. The length is 1000/25 = 40 and the perimeter is 1000/10 = 100.
Thus the perimeter has two sides of length 40 and two of length 10. The area is
40 · 10 = 400 meter2.
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46. Solution: 16 2/3%. The surface area of the original cube was 4 · 6 = 24. The
surface area of the smaller cube is 6, but when it is glued to the larger cube, two
faces of area 1 are eliminated, so the new object has area 24 + 6− 2 = 28. The
surface area increase is 4/24 = 1/6 = 16 2/3%.

47. Solution: 80◦. We know that △AFG is isosceles, so ̸ AFG must be 80◦. That
means that ̸ BFD = 100◦. Since the three angles of a triangle add to 180◦,
̸ B + ̸ D = 80◦.

48. Solution: 27. If we label the midpoint of CD as X and the midpoint of BC
as Y we know that the areas of △ABY and △ADX are 1/4 the area of the
rectangle, and that the area of △XY C is 1/8 the area. Thus the area of △AXY
is 1− 1/4− 1/4− 1/8 = 3/8 the area of the rectangle, or 27.

5 Solutions: Intermediate Problems

1. The area of the inner square ABCD is easy: the lengths of its sides is 3 so
the area is 9. The the sides of WXY Z are made up of sides or hypotenuses
of isosceles right triangles. The outer (smaller) triangles have sides of length
1/
√
2 =

√
2/2 and there are two of these along each side, for a length of

√
2.

The hypotenuse that lies inside the square ABCD has length
√
2 so the total

side length of square WXY Z is 2
√
2 so its area is 8.

Another nice way to obtain the area of 8 is to note that square WXY Z is formed
of 5 1× 1 squares, 4 half-squares, and 4 quarter-squares, making a total of 8 full
squares.

2. The pentagram’s perimeter is made of 10 equal-length segments, so each of those
must have length x. The isosceles triangles formed with a side of the inner
pentagon (and thus having length 1) is a 36◦ − 72◦ − 72◦ triangle and hence
the longer sides have length τ , the golden ratio. (τ = (1 +

√
5)/2.) The outer

isosceles triangles having the shorter sides of length τ are 144◦ − 36◦ − 36◦

triangles and so the longer edge is τ times the shorter lengths, and hence is
τ2 = x2. Thus the perimeter of the outer pentagon is 5x2.

3. See the figure below. Assign coordinates so that A = (0, 0), D = (0, 10),
B = (15, 0) and P = (x, y).

AA BB

DD CC

P=(x,y)P=(x,y)

Since AP = 10 and DP = 12 we have the following equations:

x2 + y2 = 102

x2 + (y − 10)2 = 122
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Subtract the two equations to obtain 20y = 56, or y = 14/5 and when we plug
this back into one of the equations to solve for x we obtain x = 48/5.

Calculate the length CP as follows:

CP =

√(
10− 14

5

)2

+
(
15− 48

5

)2

=

√(36
5

)2

+
(27
5

)2

=

√
2025

25
=

45

5
= 9.

Now △CPD has sides 9, 12 and 15 so it is a right triangle and thus ̸ DPC =
90◦.

4. Imagine line segments drawn from P to the vertices of the triangle, dividing
it into three smaller triangles. The sum of the areas of these three triangles is
constant, as long as P is inside the larger triangle. But the sum of the areas is
just 1/2 times the sum of the perpendicular lengths x, y and z to the sides of the
larger triangle, something like:

5x+ 5y + 6z

2
,

which is a constant (the area of △ABC). To make the sum as large as possible,
z needs to be as small as possible, so set z to zero and the sum x+y+z = x+y.
Now 5x+ 5y is constant (twice the area of the large triangle, and this will occur
whenever z is on the line of length 6 (line BC).

To make the sum as small as possible, set x = y = 0, so z is at the vertex A.

For a general triangle, the same idea holds, but the point P needs to be either
at the vertex opposite the shortest edge (for the largest sum) or at the vertex
opposite the longest edge (for the smallest sum).

5. See the figure below.

CC BB

AA

DD

PP

QQ

1212

77

99

If we consider AC to be the base, then triangles △BCD and △BAD have the
same height, so the ratio of their areas is the same as the ratio of their bases;
namely, 9 : 7.

We also know that △APD ∼ △AQC so all their side lengths are proportional.
Thus QC : PD = 16 : 7.

6. Assume the square has area 1 (so is 1 × 1). In the figure below we need to find
x and y such that x+ y = 1 and so that the folded part is equal to x in length.
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x

y

The folded part has length x = y
√
2, so we have:

y + y
√
2 = 1.

Solve to y to obtain y =
√
2− 1.

The area of the pentagon is the area of the square (1) minus the area of the
triangle that is cut off. So the pentagon’s area is:

1− (
√
2− 1)2/2 =

√
2− 1/2.

7. There are two ways to inscribe a square in a quarter circle; see below:

On the left, it’s clear that the diagonal of the square is the same as the radius of
the circle, so if the diagonal is 1, by the Pythagorean theorem, the length of the
side is

√
2/2, so the area is 1/2.

If the square is inscribed as in the figure on the right, it’s a little trickier, but
consider the diagonal of the square. If we connect the top of the diagonal to
the corner of the square it forms a right triangle with hypotenuse 1 and with
width the same as half the height. If the width is w then the height is 2w so
the Pythagorean theorem gives: w2 + (2w)2 = 12, so w = 1/

√
5, so the full

diagonal of the square is 2/
√
5, making the side of the square equal to 2/

√
10.

Square that to obtain the square’s area and we obtain: 4/10 = 2/5.

8. If the side of length 0.6 pivots one way it can form a line as long as 4.4; the other
way, as short as 3.2. The length of the third side must be between 3.2 and 4.4.
Since its length is an integer, it must be 4.

9. In the figure below, using the Pythagorean theorem, it’s easy to see that the side
length of one of the squares is

√
2 and that of the other,

√
5, so the two squares

have areas 2 and 5..
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10. Consider the figure below which divides the pentagram into two sorts of regions:
6 of one type and 2 of the other.

Because of the geometry of a pentagram, there are only two side lengths of the
triangles in the figure. If the shorter one has length 1 then the other has length
τ = (1 +

√
5)/2. (τ is the golden ratio.)

Consider one of the triangles formed with one of the smaller triangles and one
of the larger ones. The ratio of their areas will be the same as the ratio of their
base lengths, since the heights are the same. Thus the ratios of the areas of the
two types of triangles are 1 : τ .

If we call the small triangle’s area 1, then the area of the pentagram will be:
2 + 6τ . If we calculate the area of the shaded region in the original problem, we
obtain 1 + 3τ . Thus the shaded region has half the area of the full pentagram.

11. If you look at soft drink bottles carefully, you’ll note that the caps are all the
same size, so the bottles are not exactly similar: some parts are larger and some
parts are the same size.

12. Construct the line DC as in the figure below:

DD

EE

FF

CC

AA
BB

Since C is the midpoint of AB then the areas of triangles △ACD and △CFD
are the same (they have equal bases). Similarly, since A is the midpoint of DB
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we know that triangles △ABC and △ADC are the same for the same reason.
Thus all three triangles have the same area.

We can do the same thing by constructing lines AE and BF that, using similar
arguments, will divide the triangle DEF into 7 regions, each having the same
area. Since the area of △ABC is 1, the area of △DEF is 7.

6 Solutions: Harder Problems

1. Consider the figure below where we have constructed the segments A′C and
AC:

AA

BB CC

DD

A’A’

B’B’

C’C’

D’D’

The three triangles △ABC, △A′BC and △A′B′C all have the same area. Since
AB = A′B the triangles △ABC and △A′BC have the same area since they
have equal bases and the same height. Similarly, since BC = B′C the triangles
△A′BC and △A′B′C have equal bases and the same height.

Thus the area of △ABC is half the area of △A′B′B. We can make a similar ar-
gument about all of the outer triangles to show that each is double the area of one
of the triangles formed by the bisection of the quadrilateral ABCD. Those four
triangles: △ABC, △BCD, △CDA and △DAB cover the original quadrilat-
eral exactly twice so the sum of the outer triangles’ areas is exactly twice the
area of the quadrilateral ABCD. The area of A′b′C ′D′ is the sum of the areas
of the outer triangles and the area of ABCD, so it is 5 times as large as the area
of △ABCD.

2. See the figure below:

AA DD

CCBB
OO

Since BC∥AD we know that both B and C are the same distance from the line
AD.l Triangles △ABD and △ACD have the same base and the same height
and hence, the same area. If we subtract the area of △AOD from both of those
equal areas we obtain the areas of triangles △AOB and △COD so those must
also be the same.
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3. See the figure below:

AA BB

CC

PPMM

XX

Assume the point P is closer to B than A so the midpoint M lies between A and
P . We need to find a point X on the segment AC such that the area of △AXP
is half the area of △ABC.

We could drop perpendiculars from X and C to X ′ and C ′ on AB but since
we’re only interested in ratios of areas, we will have XX ′ : CC ′ = AX : AC.
Using AX and AC, the point X must be found such that:

AP ·AX =
1

2
AC ·AB

and since AM = AC/2 we cam write:

AP ·AX = AM ·AB.

Thus we need to multiply the segment AC by AM/AP and that can be done by
constructing the line PC and then constructing the line through M parallel to
PC and letting X be the intersection of that line with AC.

4. See the figure below:

AA
BB

CCDD XXMM

Through the point B draw a line parallel to AC that intersects the extension
of the line DC at X . Since BX∥AC we know that the triangles △ABC and
△ACX have the same area. Thus for any point M between C and D, the area
of △AMX is equal to the area of the quadrilateral ABCM . In particular, if
M is the midpoint of DX it will split the area of △AXD into two equal-area
triangles: △AMD and △AMX . But the area of △AMX is the same as the
area of the quadrilateral ABCM , so the line AM performs the desired division.

5. See the figure below:

AA

BB

CCDD MM NN

OO

PP
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We divide the quadrilateral into six triangles as shown in the figure: △DAM ,
△AMO, et cetera. First consider the sequence of triangles △DAM , △MON
and △NPC. They have equal bases since M and N trisect DC so their areas
are in the ratio of the altitudes from A, O and P . Since AB is a straight line,
these altitudes are in a linear progression, so the area will increase by the same
amount as we go from one to the next. If the area of △DAM is X , then the
areas of those three triangles can be expressed as: X,X+ t,X+2t where t may
be positive, negative or zero.

Now look at the triangles △AOM , △ONP and △PCB. Their altitudes from
M , N and C also increase (or decrease) by a constant amount at each step, so if
the area of △AOM is Y , the three areas will be Y, Y + s, Y + 2s, again with s
being positive, negative or zero.

The area of quadrilateral MOPN is thus X + Y + s + t and the area of the
entire quadrilateral ABCD is 3X + 3Y + 3s+ 3t which is three times the area
of MOPN , wheich is what we wanted to show.

6. Imagine doing the same divisions as in the previous problem, but first in one di-
rection and then in the other. The first division lines will divide the quadrilateral
into three areas where the area of the middle one will be 1/3 that of the entire
one.

The second set of dividing lines will divide the new edges of that middle piece
into three equal lengths, and again, using the same argument, the area of the
middle middle piece will be 1/3 of the area of the middle piece, or 1/9 the area
of the original quadrilateral.

7. Suppose that there is an airport that receives 6 (or more) planes. We’ll see what’s
wrong with 6 and the same argument will work for any larger number. If 6
planes land at airport A, say from airports B,C,D,E, F and G arranged in
clockwise order around A, then for any triangle, say △ABC since AB and AC
have to be smaller than BC (or the B and C planes would have gone to C and
B, respectively) then since larger angles are opposite larger sides in any triangle,
the angle at A is larger than the other two. Since the three angles add to 180◦

that means that the angle at A is larger than 60◦. The same thing can be said for
every other triangle that includes A, so the total of the angles at A must be larger
than 6 · 60◦ = 360◦. This is more than a full circle so the situation is impossible.

8. Among all triples of points, find a particular set of points A,B and C so that
△ABC has the largest area, which is 1 or less. If there is more than one set of
such points, choose any particular one.

Now construct a triangle △A′B′C ′ as in the figure below such that AB∥A′B′,
BC∥B′C ′ and CA∥C ′A′.

AA

BB

CC

C’C’

A’A’

B’B’

We claim that all the additional points must lie somewhere inside △A′B′C ′. If a
point P is outside WLOG we can assume it is on the opposite side of A′B′ from
A and B.
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Consider the triangle △ABP . Using base AB, its altitude is larger than that of
△ABC, so its area is larger than △ABC, which is a contradiction.

9. No. Consider the convex hull of the endpoints of the segments. (The convex hull
of a set is the smallest convex body that contains all the points in the set.) Since
the points on the line segments lie between the endpoints and since the convex
hull is convex, all the line segments will lie within the convex hull as well.

The convex hull will be a polygon whose vertices are all endpoints of the line
segments. Any one of these hull vertices cannot lie on the interior of any segment
in the set, since any such segment would lie at least partly outside the convex hull.

10. If one of the points, say A, lies inside the triangle formed by points B, C and D,
then the three triangles △ABC, △ACD and △ADB meet at the point A and
the three angles there add to 360◦. That means that at least one of those angles
is at least 120◦, so there is a non-acute triangle.

If no such point exists, then the quadrilateral (perhaps with renaming some
points) ABCD is convex. The four interior angles add to 360◦ so at least one
interior angle of ABCD, say A, is 90◦ or more. That means that △ABD is
non-acute.

11. First notice that no two rectangles can have the same n or same m. If (nk1)
and (n, k2) where k2 > k1 are two rectangles in the collection, then the (n, k2)
rectangle completely contains the (n, k1) rectangle.

Assume that there is such a collection. Pick any particular rectangle (n,m) in
the set. There are at most n − 1 rectangles with a smaller first coordinate and
at most m − 1 rectangles with a smaller second coordinate. Since there are an
infinite number of rectangles in the collection, all but at most m+n− 2 of them
have larger first and second coordinates and thus there are an infinite number of
rectangles that cover (n,m).

12. For part (a) in fact it is possible to find a rectangle of area 2 that contains the
entire convex region. To see this, first find points A and B that are farthest apart
in the region. Construct lines perpendicular through A and B perpendicular to
AB. No other points of the region can lie on these lines since if another one did,
say C on the line through A, then CB would be longer than AB.

The entire convex region is thus contained between those two lines and let’s
arrange the figure so they are horizontal.

Now, starting from the far left and far right, slide in two other lines parallel to
AB until each one touches the convex region at L on the left and at R on the
right. When that happens, we have a rectangular box that encloses the entire
convex region.

Note that the area of the box is twice the sum of the areas of the two triangles
△ABL and △ABR. Because of the convexity of the original figure, quadrilat-
eral ALBR is completely contained within it, so its area is less than or equal to
1. The are of the box is thus less than or equal to 2 and contains the entire convex
region, so we are done.

For part (b), note than any enclosing parallelogram must share two sides with
the triangle. If not, by rotating the sides of the parallelogram to be closer to
the sides of the triangle would reduce the area of the parallelogram. Thus the
parallelogram shares two sides of the triangle, and thus must have an area of
twice that of the triangle.
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13. This is known as “Helly’s Theorem.” Here is a proof (basically from the page on
Helly’s Theorem in cut-the-knot.org).

First prove it for the case of four regions, R1, R2, R3 and R4. For every three
regions, let pi be a point that is in the three regions that do not include region
Ri, so, for example, p2 is a point in the intersection of R1, R3 and R4, et cetera.
There are two cases to consider:

(a) One of the points, say p1, lies in the interior of the triangle △p2p3p4. By the
convexity of the regions, the entire triangle lies completely within regions
R2, R3 and R4, so p1 also lies in all three regions, and that implies that p1
lies in all four regions.

(b) If the situation above does not occur, the points p1, p2, p3 and p4 form a
convex quadrilateral since none of them lie within the triangle formed by
the other three. By renaming, if necessary, assume that the order of the
points around the quadrilateral is in numerical order of the indices. Then
the diagonal p1p3 lies in both R1 and R3 and hence also all the points on
that diagonal. The same can be said about the diagonal p2p4, but those
lines intersect at a point p which must therefore be in all four regions.

The proof above can be extended by induction to any number of sets Ri. It’s true
for 4 sets, so assume it’s true for k sets and consider the situation with k+1 sets.
Then let Gi = Ri

∩
Rk+1 for i < k + 1. Clearly the intersection of any three

Gi is non-empty so by the induction hypothesis, the intersection of all of them is
non-empty. But their intersection is the intersection of all the Ri (k + 1 sets).

14. Not true. Here’s a counterexample:

15. It is not true. See the figure below, for example:

16. See the figure below:

PP
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17. See the figure below:

PP

18. Shrink the original rectangle to half its width and half its height (including the
covering circles). The resulting figure will be completely covered by 100 circles
of radius 1. Put four of these together to form a rectangle of the original size, but
completely covered by 400 circles of radius 1.

19. (a) See the figure below:

AA

BB

CC

GG

II
JJ

KK

LL

The proof goes as follows. Find an angle ̸ ABC such that the interior of
the polygon is on the side of the angle less than 180◦. Then there are two
cases. Either the line segment AC lies completely within the polyon in
which case we are done, and AC is the required diagonal, or some part of
the polygon (shown as GJKL in the figure) goes inside △ABC.
Since there are only a finite number of vertices of the polygon interior to
△ABC; for each of those, construct a line perpendicular to the angle bi-
sector of ̸ ABC. Clearly, the line connecting B to the vertex with perpen-
dicular closest to point B will lie completely within the polygon. If not, it
had to cross another edge of the polygon, and one end of that edge would
have a perpendicular to the angle bisector closer to B.
Note that we cannot use the vertex closest to B. In the figure, J is the point
nearest B, but clearly segment JB crosses segment KL.

(b) In a non-convex 4-sided figure there is exactly one such diagonal.
In general, we know that any n-sided simple polygon can be completely
triangulated by diagonals contained within the polygon, that at least n− 3
diagonals must exist. It is quite easy to construct a polygon that has exactly
n− 3 diagonals and no more.
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(c) Prove this by induction. A 3-sided figure must be a triangle, and so no
additional diagonals are needed. Next assume that every polygon with n ≥
3 or fewer sides can be triangulated using only diagonals, and consider
an arbitrary polygon with n + 1 sides. By part (a) above, we can find an
interior diagonal for this polygon that will split it into two polygons, each
of which has fewer than n sides. By the induction hypotheses, each of
these can be triangulated using only interior diagonals, so the combination
of those diagonals plus the original diagonal we used to split the (n + 1)-
sided polygon will do the trick.

(d) Again we can prove this by induction. It’s obviously true for a triangle, and
if we split a larger polygon using an interior diagonal, label both ends of
that diagonal with different colors, and then color both polygons into which
the original polygon is subdivided, beginning with the two colors that you
assigned to the ends of the diagonal you added.

20. Consider the following labeling of the squares of the 10× 10 chessboard:

A

B

C

D

A

B

C

D

A

B

B

C

D

A

B

C

D

A

B

C

C

D

A

B

C

D

A

B

C

D

D

A

B

C

D

A

B

C

D

A

A

B

C

D

A

B

C

D

A

B

B

C

D

A

B

C

D

A

B

C

C

D

A

B

C

D

A

B

C

D

D

A

B

C

D

A

B

C

D

A

A

B

C

D

A

B

C

D

A

B

B

C

D

A

B

C

D

A

B

C

Notice that no matter where you place it on the board, a 1× 4 domino will cover
exactly one each of A, B, C and D. But if you count the numbers of each letter
on the board, you will see that there are 25 A’s, 26 B’s, 25 C’s and 24 D’s. In
order to have a valid covering, we need equal numbers of each so this problem
is impossible to solve.
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