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Abstract

A group is a mathematical object of great importance, but the usual study of group theory is
highly abstract and therefore difficult for many students to understand. A very important class of
groups are so-called permutation groups which are very closely related to Rubik’s cube. Thus,
in addition to being a fiendishly difficult puzzle, Rubik’s cube provides many concrete examples
of groups and of applications of group theory.

In this document, we’ll alternate between a study of group theory and of Rubik’s cube, using
group theory to find tools to solve the cube and using the cube to illustrate many of the important
topics in group theory.



1 Introduction

Note: If you have a new physical cube, do not jumble it up right away. There are some
exercises at the beginning of Section 2 that are much easier with a solved cube. If you have
jumbled it already, it’s not a big deal—Appendix A explains how to unjumble it but the
first few times you try, you’ll probably make a mistake.

To read this paper you will certainly need to have the Rubik computer program and it would
be very good also to have a physical Rubik’s cube. The Rubik program, complete documenta-
tion for it, and a few sample control files may be obtained free of charge for either Windows or
Mac OS X (version 10.2.0 or later) at www.geometer.org/rubik. If you have not done so,
acquire a copy of the program and print a copy of the documentation (there’s not too much—only
about 15 pages). If you don’t have Rubik, but do have a cube, you’ll need a lot of patience and
probably a screwdriver to take the cube apart for reassembly in a “solved” configuration if you
don’t know how to solve it already.

First, some quick notation. The word “cube” will usually refer to the entire cube that appears
to be divided into 27 smaller cubes. We shall call these smaller cubes “cubies”, of which 26
are visible. There are three types of cubies: some show only one face (called “face cubies” or
“center cubies”, some show two faces, called “edge cubies” (“edgies”?) and some show three:
the “corner cubies” (“cornies”?). The cube has six faces, each of which are divided into 9 smaller
faces of the individual cubies. When it is important to distinguish between the faces of the large
cube and the little faces on the cubies, we’ll call the little faces “facelets”.

A permutation is a rearrangement of things. If you consider the “things” to be the facelets on
Rubik’s cube, it is clear that every twist of a face is a rearrangement of those facelets. Obviously,
in Rubik’s cube there are constraints on what rearrangements are possible, but that is part of what
makes it so interesting. The three facelets that appear on a particular corner cubie, for example,
will remain next to each other in every possible rearrangement.

A good understanding of permutations and how they behave will help you to learn to effec-
tively manipulate and solve Rubik’s cube. The cube, however, has 54 visible facelets, so each
cube movement effectively rearranges 54 items. Since the best way to learn about any mathemat-
ical subject is to begin by looking at smaller, simpler cases. Thus in the first part of this document
we’ll look at permutations of small numbers of items, where we can list all the possibilities and
easily keep everything in mind.

When we talk about general properties of permutations in what follows, try to think about
what these statements mean in the context of a few concrete examples. Rubik’s cube is one such
concrete example, and we’ll introduce a few others as we proceed.

2 The Rubik Program and the Physical Cube

If your physical cube is solved (as it came when you bought it), continue with the following
exercises. If it is jumbled, get it unjumbled first by following the directions in Appendix A and
then return here. And if you make a mistake while reading this section and accidentally jumble
your cube so that you can’t solve it, you’ll probably need to do the same thing. In fact, even if
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you’ve got a solved cube now, it is almost certain that you’ll make a mistake sometime as you
read, so it’s a good idea to try out the method in the appendix to make sure you know how it
works. Take your solved cube and make one or two twists, then make sure you can use Rubik
to find that one- or two-move solution.

Beginning now and for the rest of the paper, we will use the same notation to describe the
cubies and the twists that is used by the Rubik program. For complete details, see the Rubik
documentation in the section entitled, “Cube Coordinates and Move Descriptions”.

Basically, what you’ll need to know now is that the letters: U, L, F, R, B and D correspond to
quarter-turn clockwise twists about the up, left, front, right, back and down faces, respectively.
“Clockwise” refers to the direction to turn the face if you are looking directly at the face. Thus
if you hold the cube looking at the front face, the move B appears to turn the back face counter-
clockwise. The lower-case versions of those letters, u, l, et cetera, refer to quarter-turn counter-
clockwise moves about the respective faces.

Hint: if you are beginning, it might be a good idea to put temporary stickers on the six center
facelets of your physical cube labeled “U”, “L”, et cetera, and then just make certain that your
cube has the same up and right faces as the virtual cube on the computer screen if you wish to
use the two in conjunction (like when you’re using Rubik to unjumble your physical cube). At
the very least, decide for yourself on a “standard” orientation, like “white face up, green face
left” (which happens to be Rubik’s default orientation). With these temporary labels in place
you can’t use the whole-cube moves or the slice moves since they change which cubies are “up”.

2.1 Inverse Operations

Let’s begin with a couple of obvious observations. If you grab the front face and give it a quarter-
turn clockwise (in other words, you apply an F move), you can undo that by turning the same face
a quarter-turn counter-clockwise (by doing a f move). If you do a more complicated operation,
like F followed by R, you can undo that with a r followed by a f. Notice that you need to reverse
the order of the moves you undo in addition to the direction of the turns—if you try to undo your
FR sequence with an fr you will not return to a solved cube. Try it—carefully do the sequence
FRfr and note that the cube is not solved.

Now, to return to solved, you’ll need to do a RFrf. Do you see why? Do so now to return
your cube to “solved”.

In mathematics, an operation that “undoes” another one is called the inverse of that other
operation, and the inverse is often indicated with a little “−1” as an exponent. If we wanted to
use this convention with our cube notation, we could write “F−1” in place of “f”, “U−1” instead
of “u” and so on. Since the standard computer keyboard does not allow you to type exponents,
the lower-case versus upper-case notation is used.

This double-reversal idea (that RFrf is the inverse of FRfr is very general. If a, b, c, ... are
any operations that have inverses a−1, b−1, c−1 and so on, then:

(abc · · ·xyz)−1 = z−1y−1x−1 · · · c−1b−1a−1.

Because of this general principle, it is thus trivial to write down the inverse of a sequence
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of cube moves: just reverse the list and then change the case of each letter from upper to lower
or vice-versa. For example, the inverse of the sequence ffRuDlU is uLdUrFF. This will always
work.

Notice also that another way to write the inverse of F is as FFF. In other words, if you twist
the front face three more times, that’s the same as undoing the original twist. We’ll look more at
this idea in the following section.

3 Commutativity and Non-Commutativity

Again it should be obvious, but the order in which you apply twists to the faces makes a differ-
ence. Take your physical cube and apply an FR to it and apply RF to the virtual cube in Rubik.
It’s obvious that the results are different. Thus, in general FR 6= RF. This is not like what you
are used to in ordinary arithmetic where if you multiply two numbers together, the order doesn’t
matter—7× 9 = 9 × 7 and there’s nothing special about 7 and 9.

When the order does not matter, as in multiplication of numbers, we call the system “com-
mutative”. If it does matter, as in the application of twists to a cube, or for division of numbers
(7/3 6= 3/7) then we say that the system is non-commutative. It’s easy to remember the name;
you know what a commuter is: someone who commutes, or moves. In a commutative system,
the objects can commute across the operation and the order doesn’t matter.

Just because a system is non-commutative, that does not mean that the result is always
different when you reverse the order. In your cube, for example, FB = BF, UD = DU and
LR = RL, FF2 = F2F, and so on. (And in arithmetic, division is sometimes commutative:
1/(−1)=(−1)/1.)

If twisting the cube faces were a commutative operation, then solving the cube would be
trivial. You would just need to make sure that the total number of F turns, U turns, and so on, are
multiples of 4 and you’d be done. To see this on a small scale, suppose your cube only allowed
you to turn the front and back faces but turns about the left, right, up and down faces were not
allowed. Try this with your physical cube, and you’ll see that it’s not a very interesting puzzle.

3.1 Order

Since we are looking at all operations that can be performed on a cube, it is important that we
not forget perhaps the most important one: the operation of doing nothing—of leaving the cube
exactly as it was before. This is called the “identity” operation and we’ll call it 1 here if we need
to refer to it. The reason that 1 is a reasonable notation is that if we use the notation FRB to
mean F followed by R followed by B, it sort of looks like we’re “multiplying” together those
three operations. We’re also used to the idea that multiplying anything by 1 leaves it unchanged,
and it’s certainly true that 1F = F1 = F—doing nothing and then doing F is the same as just
doing F.

Let’s begin by looking at another obvious thing. If you start with a solved cube and perform
the R operation on it four times, the resulting cube returns to a solved state. Since our notation
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for combining moves makes us think of multiplication (and as we shall see, this is a good way
to think of it), we could indicate multiples of the same operation as exponents: FF = F2, FFF
= F3, et cetera. Now, since we noticed that applying the f operation four times was the same as
doing nothing, we can also write F4=1.

As we do in most other areas of mathematics, it is reasonable to define F0 = 1, since applying
an operation zero times is the same as not applying it at all, which is our definition of 1. Similarly,
F1 = F since an exponent of 1 corresponds to applying the operation once.

Obviously, there is nothing special about F for this exponential notation—it applies to any
other move, or, in fact, to any combination of moves. For example, if we thing of the combination
FR as a single operation, then if we want notation that corresponds to repeating that operation 5
times, we can write (FR)5. This means exactly the same thing as FRFRFRFRFR.

In this case it is also obvious that if we look at successive powers of F: F1, F2, F3, and so on,
then F4 is the first time that we return to the identity. For this reason, we say that the “order” of
the operation F is 4; four moves do the job and no smaller number of moves return us to where
we started.

What appears at first to be somewhat amazing is that any cube operation has such an order.
In other words, if you begin with a solved cube and repeat any operation enough times, the cube
will eventually return to “solved”.

As an exercise, try to find the order of FFRR using a physical cube. Start with a solved cube
and apply those four moves. You will find that the cube is a bit jumbled. Repeat the same four
moves, and again, and again. Eventually (assuming you don’t make a mistake), the cube will
be solved again. The total number of times you had to repeat the four-move combination is the
order of that operation.

You can check your answer with Rubik. Reset the cube to solved and type “FFRR” into the
window labeled “Current Macro”. Then press the Macro Order button just above the window
in which you just typed, and Rubik will pop up an information window showing you the order
that it calculated.

With the cube in Rubik solved and the “FFRR” still visible in the “Current Macro” window,
click on the Apply Macro button. This will instantly apply your four moves and show you the
result. If you wish, apply the same FFRR operation to your physical cube and compare the
results. Click the same Apply Macro button again and again until the cube returns to solved.
It should be the same number of times as the order you calculated twice before. In fact, what
Rubik is doing is just that—it starts with a solved cube, applies the move combination in the
window time after time, and after each application, it checks to see if the cube is solved. When
the cube has returned to the solved configuration, the order is simply the number of times that it
took.

By the way, just so you don’t get mixed up, it might be a good idea to return your cube to
solved now with rrff.

It’s not too much fun just to use the Apply Macro button in Rubik—the cube just jumps to
the result and you can’t see how it got there. Reset the cube again, and make sure that the same
FFRR is in the “Current Macro” window, click in that “Current Macro” window with the mouse
and press the return key on your keyboard. Rubik then twists the cube faces as you watch.
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Note: if the cube faces turn too quickly or too slowly, see the Rubik documentation to learn
how to set the turning speed to a reasonable value for your computer.

The return key is the scenic route and the Apply Macro button is the superhighway.

Why is it the case that any cube operation, if repeated enough times, will eventually return
to where it started?

Each time an operation is repeated, the facelets are rearranged. Since there are only a finite
(although very large) number of possible rearrangements, we know that if we repeat the operation
at least that number of times, we are guaranteed eventually to repeat one of the arrangements.
This does not prove yet that the cube will return to the initial configuration, but at least it will
repeat some arrangement.

Let’s call the operation P, where P stands for any combination of cube face twists. If we
apply P repeatedly, eventually it will arrive at a repeat arrangement of the cubie facelets. Suppose
that this first happens after m times and that this arrangement is the same as one that occurred
at and earlier step k, where k < m. Thus Pk = Pm, and m is the smallest such number. Thus,
unless k = 0, Pk−1 6= Pm−1. If k = 0, we are done, since P0 = 1, so suppose that k > 0.

Since Pk = Pm, this means that if we apply P either k times or m times to the same initial
cube, we arrive at the same final cube arrangement. If we apply P−1 to that arrangement, the
result will be the same, no matter whether it was arrived at after m or k steps. (Since applying
the same operation to the same arrangement will yield the same result.)

But applying P−1 at the end of each exactly undoes the final application of P that was done.
If you apply P m times and then undo P once, that’s the same as just applying it m − 1 times
and similarly for k. Thus PkP−1 = Pk−1 and PmP−1 = Pm−1. Therefore Pk−1 = Pm−1,
contradicting the assumption that m was the smallest value where the rearrangement repeats.
Thus k must be equal to 0, so Pm = 1.

This is very interesting for a couple of reasons. From a purely artistic viewpoint, if you
take a solved cube and repeatedly apply the same set of operations, it will eventually return to
solved again and again. The Rubik program has a Demo button that causes the cube to spin
through a random set of states but it keeps repeating that pattern, so if you watch long enough, it
is guaranteed to return to solved, not once, but over and over again1.

If you have your own favorite set of moves that goes through a bunch of pretty patterns, you
can force Rubik to use that as its demo pattern. Simply type it into the “Current Macro” box
before you press the Demo button. For example, try typing RlUdRb as your macro and then
run the demo. If there’s anything in that box, Rubik uses it for the demo pattern; if the box is
empty, Rubik invents its own pattern.

But the fact that any pattern eventually returns to solved actually provides a brute-force
mechanism that you could use to solve the cube, although your solution would be quite lengthy.

The usual method to solve a cube is to find combinations of moves, which, when applied as
a unit (which is what we’ll call a “macro”), do very specific things to the cube. For example, if

1In fact, the code in the demo routine selects by trial and error a combination of moves such that the total number of
moves is tolerably small—less than 300—so if you run the demo mode, you are guaranteed that the positions will start
to repeat in fewer than 300 moves.
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you found a move that would flip two edge cubies in place, if the cube you were trying to solve
had two edge cubies in that orientation, you could apply the macro and bring your cube one step
closer to solution. In fact, when Rubik first comes up there is a set of such useful macros loaded
into the “Defined Macros” area. See the user’s guide to learn exactly how to use these.

The question is, how do you discover these macros that do very small, specific things and
leave most of the cube unaltered? It turns out (and we shall see why later) that if you have a
macro with a certain order and you apply it for half or a third of that number of steps, the result
is often a usable (although usually very long) macro.

As an example, consider the FFRR macro that we experimented with before. We found (in
three different ways, hopefully) that the order of this macro is 6. The “large” divisors of 6 are
2 and 3, so you may find interesting macros by repeating the FFRR combination twice or three
times.

To do this, reset the cube and type FFRR into the “Current Macro” window. If you press the
Apply Macro button twice there’s a sort of a nice pattern, but it moves far too many facelets to
be useful for solving the cube. Press it a third time, however, and you’ll see that the net result is
that two pairs of edge cubies are exchanged and everything else remains exactly as it was before.
Thus FFRRFFRRFFRR might be useful to you as you’re solving a cube.

It’s easy to look for such macros. Simply type in various (usually short) sets of moves and
find the order of that operation. If that order is divisible by a small number like 2 or 3 or perhaps
5, try dividing the order by that number and applying the macro that number of times. There
is a shortcut for doing this. Suppose you find a pattern that repeats every 90 moves (the macro
FFLLBR, for example, has order 90). If you want to see what this does to the cube after 45
moves (for a total of 45× 6 = 270 moves, which would be fairly painful to use), you can simply
type the following into the “Current Macro” window: “45(FFLLBR)”. A number in front of a
group of moves in parentheses tells Rubik to repeat the stuff inside that many times. These
groupings can be nested, but this will not be too useful for finding cube-solving macros.

To see why this strategy might produce useful patterns, we will need to take a detour to learn
something about the structure of permutations.

4 Permutations

A permutation is a rearrangement of a set of objects. Keep in mind that it is the rearrangement
that’s the important part; usually not the objects themselves. In some sense, the permutation that
exchanges items 1 and 2 in the set {1, 2, 3} is the same as the permutation that exchanges A and
B in the set {A, B, C}—the rearrangement is the same; it’s just that the names of the particular
items are different in the two cases. In what follows, unless we are talking about Rubik’s cube,
we’ll just consider the objects to be moved to be the numbers from 1 to N .

One way to think about permutations of N objects is to visualize a set of boxes numbered 1
to N , and a set of balls with the same numbers 1 to N , where each box contains a single ball.
A permutation consists of taking the balls out of the boxes and putting them back, either in the
same or different boxes, so that at the end, each box again contains exactly one ball.
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A permutation can be described by a series of statements like the following:

The ball originally in box 1 is moved to box A1.
The ball originally in box 2 is moved to box A2.
The ball originally in box 3 is moved to box A3.
. . . et cetera.

The A1, A2, A3, and so on represent numbers from 1 to N .

If the situation before the rearrangement occurs has ball number i in box number i for every
i, then if we simply list the contents of the boxes in order, we have a complete description of the
permutation.

As a concrete example, if the objects are 1, 2, 3 and 4, we might use 1342 to represent the
permutation that leaves the contents of box 1 fixed, moves the ball in box 2 to box 3, from box 3
to box 4 and from box 4 to box 1.

The description above works because there is a natural order of the objects 1, 2, 3 and 4
but there is no such natural order to the cubies or faces in Rubik’s cube—does a yellow face
“naturally” come before a red face? Who knows?

This problem can be solved by listing a permutation as two rows where the item in the top
row is represents each original box and the item directly below it is the box to which the contents
of that original box were moved. Thus the example permutation of the four numbers above can
be described equally well by any of the following:

(

1234
1342

)

or

(

2134
3142

)

or

(

4321
2431

)

or

(

3412
4213

)

(1)

or in any of 20 other forms, as long as there’s always a 1 under the 1, a 3 under the 2, et cetera.

5 Permutation Cycle Notation

The notation introduced in the previous section certainly works to describe any permutation, but
there is a much better way that we will call “cycle notation”. If we are looking at a particular
permutation, we can begin at any box and see where the contents of that box are moved by the
permutation. If that first ball doesn’t remain fixed, it moves to a new box, so the ball in that new
box is moved to yet another box, and so on. Eventually, a ball has to move back to the original
box since there are only a finite number of boxes. This forms a cycle where each ball moves to
the next position in the cycle and the moves eventually “cycle around” to the original box.

These cycles can have any length from 1 up to N , the total number of boxes. In the previous
example shown in equation 1, item 1 forms a cycle of length 1 (since it doesn’t move, or if you
like, it moves to itself). The other three form a cycle: 2 moves to 3, 3 moves to 4 and 4 moves
back to 2. The cycle notation for that permutation is this:

(1)(2 3 4).

To interpret cycle notation, the set of items between each pair of parentheses form a cycle,
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with each moving to the box of the one that follows it. Finally, the last one in the list moves back
to the box represented by the first one in the list. These cycles will be disjoint in the sense that
each item will appear in only one of them. If an item appeared in two different cycles, then it
would appear to follow two different paths.

Notice also that the cycle notation is not unique although it can be made to be. All the
permutations in the list below are equivalent:

(1)(2 3 4) (1)(3 4 2) (1)(4 2 3) (2 3 4)(1) (3 4 2)(1) (4 2 3)(1)

Since they are independent, we can list the cycles in any order, and since we can begin with
any element in the cycle and follow it around, a cycle of n objects can appear in any of n forms.

5.1 Canonical Cycle Notation

This makes it a bit difficult to determine at a glance whether two descriptions of a permutation
in cycle notation are equivalent, but if there is some sort of “natural” ordering to the objects then
it is possible to form a canonical cycle notation:

1. Find the smallest item in the list and begin a cycle with it.

2. Complete this first cycle by following the movement of the objects by the permutation and
close the cycle.

3. If you have finished listing all of the objects in the permutation, you are done; otherwise,
return to step 1.

The canonical form of the cycle above is (1)(2 3 4).

Let’s now look at a few more complex permutations and see what their cycle notations look
like.

The permutation (1 3)(2 4)(5) exchanges the contents of boxes 1 and 3 and also exchanges
the contents of boxes 2 and 4 and leaves the contents of box 5 unchanged.

The permutation (1 2 3 4 5)(9 8 7) cycles 1 to 2, 2 to 3, 3 to 4, 4 to 5 and 5 back to 1. In
addition, it cycles 9 to 8, 8 to 7 and 7 back to 9.

Often, if the set of objects being permuted is obvious, the objects that do not move are not
listed. Thus (1)(2 3 4) might be listed simply as (2 3 4). With this convention, however, there’s
no reasonable way to list the identity permutation that moves nothing, so it is often listed as (1),
where only one example of a non-moving object is listed, or even as 1 to indicate that it is an
identity transformation.

If you were listing the primitive cube operations in this cycle notation, the convention of
leaving out 1-cycles would be a big advantage. Of the 54 facelets on a cube, a single face twist
only moves 21 of them, which obviates listing 33 of the 1-cycles.
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5.2 The Cycle Structure of a Permutation

A very important feature of a permutation is captured when it is listed in cycle notation, and that
is its cycle structure. For example, the cycle structure of (1)(2)(3 4 5)(6 7 8)(9 10 11 12) has
two 1-cycles, two 3-cycles, and one 4-cycle. To see why this is important, let’s begin with a few
simple examples.

Consider (1 2 3). If this operation is applied three times, it is obvious that the result is the
identity permutation. Each time it is applied, each element advances to the next box in the cycle,
but the cycle is three boxes long, so after three steps, each object will return to where it started.
In fact, if P is a permutation whose structure consists of a single n cycle: (i1 i2 i3 · · · in) then
P n = 1.

Also obvious, but worth stating, is that if you apply a permutation that consists of a single
cycle of length n repeatedly, it will return to the identity after every n applications. If P consists
of a single 5-cycle, then P 5 = P 10 = P 15 = P 20 = · · · = 1.

Next, let’s consider the permutation P = (1 2 3)(4 5 6 7) that consists of both a 3-cycle and
a 4-cycle. Since the two cycles have no elements in common, if we apply P repeatedly and don’t
pay any attention to the elements in the 4-cycle, we see the elements in the 3-cycle returning to
their initial locations every three applications. Similarly, if we ignore the elements in the 3-cycle
and pay attention only to those in the 4-cycle, then every 4 applications of P returns those four
elements to their starting places.

In other words, the elements in the 3-cycle return to their original locations for P 3, P 6, P 9,
P 12, P 15, and so on. Similarly, the elements in the 4-cycle return to their original locations for
P 4, P 8, P 12, P 16, and so on.

Notice that P 12 appears in both lists, and that this is the first exponent of P that is in both
lists. This means that after 12 applications of P , the elements in both the 3-cycle and in the 4-
cycle are returned to their starting locations, and furthermore, this is the first time that it happens.
Thus P 12 = 1, and since it’s the first time this happens, the order of P is 12.

The number 12 is the least common multiple of 3 and 4, usually written as LCM(3, 4) = 12.
In other words, 12 is the smallest number larger than 0 that is a multiple of both 3 and 4. It should
be obvious from the discussion above that if a permutation consists of two cycles of lengths m
and n, then then order of that permutation is simply LCM(m, n).

The concept of a least common multiple can be extended easily to any number of inputs. We
have: LCM(4, 5, 8, 7) = 280—280 is the smallest number that is a multiple of 4, 5, 8 and 7. If
a permutation consists of a 4-cycle, a 5-cycle, an 8-cycle and a 7-cycle, then the order of that
permutation would be 280.

5.3 Applications of Cycle Structure to the Cube

Let’s consider a permutation that looks like this: P = (1 2)(3 4 5 6 7) that consists of a 2-cycle
and a 5-cycle, so its order is LCM(2, 5) = 10. What happens if we repeat P five times? In other
words, what does P 5 look like? The 5-cycle will disappear, since after 5 applications, every
element in it has cycled back to its starting point. The 2-cycle will have been applied an odd
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number of times, so it will remain a 2-cycle. Thus P 5 = (1 2).

Thus, although the permutation P by itself moves 7 objects, the permutation P 5 moves only
two objects. If the objects 1, 2, . . . , 7 in this example were really cubies in Rubik’s cube, then if
the operation P were repeated 5 times, the net result would be an operation that moved exactly
2 cubies and left all the others where they were.

Toward the end of Section 3.1 we saw an example of this: The operation FFRR moves 13
cubies, but (FFRR)3 moves only 4—it exchanges two pairs of edge cubies.

Using the names for the individual cubies described in the documentation for the Rubik
program, here is what the permutation FFRR does:

(DF UF)(DR UR)(BR FR FL)(DBR UFR DFL)(ULF URB DRF)

where we use “DF” to indicate the “down-front” edge cubie, “DBR” to represent the “down-
back-right” cubie, et cetera. Obviously, since there are 13 cubies in the permutation cycle listing,
13 of the cubies are moved by FFRR. But nine of those 13 appear in 3-cycles, so the permutation
(FFRR)3 leaves those nine cubies fixed, moving only the two pairs of edge cubies that we noticed
earlier.

The Rubik program has a command “Display Permutation” in the “File” pull-down menu
that will display the permutation that is required to get to the current cube coloring from the
solved cube. Although the notation above appears to describe the permutation, there are a couple
of problems with it:

1. If a cubie is left in its same position but is rotated (a corner cubie) or flipped (an edge
cubie), then there is no way to indicate this.

2. Even if the cubies move in a cycle to different positions on the cube, there is again no way
to indicate how they are flipped or rotated in their new positions relative to how they were
before.

The easiest way to indicate the details of a permutation exactly is to list where every facelet
of every cubie moves. Assuming that the center cubies stay in place, there are 48 of these facelets
that can move so such a complete description is a lot longer, and doesn’t make it quite so obvious
which cubies move to which locations.

So in spite of its drawbacks, the first form of the notation is usually the most useful. It can
be improved slightly so that it will indicate cubies that are flipped or rotated in place as follows:
(UF) means that the up-front edge cubie stays in place, but is flipped. (URF) means that the
up-right-front corner cubie is twisted in place where the up facelet moves to the right facelet, the
right to the front, and the front back to the up facelet.

When you issue the “Display Permutation” command you will be presented with both the
most useful and most accurate descriptions of the permutations. The notation for indicating the
movement of cubie facelets requires that each corner cube be assigned the names for its three
facelets and each edge cubie needs two. The (URF) corner cubie has the following three facelets:
(Urf), (Ruf), and (Fur). The three letters indicate which corner it is, and the letter in upper case is
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the particular cubie facelet. Similarly, the two facelets of the cubie (UF) are (Uf) and (Fu). The
description of the movement that flips the UF and UL cubies in place is this: (Lu Ul)(Fu Uf).

To save you the trouble of counting the number of terms in each cycle, the cycle notation is
listed below each permutation. A permutation having the following notation:

4(3) 2(5) 1(6) 1(8) 1(12)

means that the particular permutation consists of four 3-cycles, two 5-cycles, and one each of a
6-cycle, an 8-cycle and a 12-cycle.

In the first listing Rubik may also list a certain number of 1-cycles, but these simply repre-
sent the number of cubies that say in place and are either flipped or rotated. Look at the detailed
permutation description to see what they are. Cubies that stay in place and are not moved are not
listed as 1-cycles. Similarly, the 1-cycles in the face-permutation listing are not included.

Here is an example where the permutation cycle form can be used to find a macro that would
be truly useful for solving the cube, although it contains far too many steps. On the other hand,
if you didn’t know any better techniques, this one would work. The example also illustrates one
of the shortcomings of the cubie-based cycle notation. Although you apply a 9-cycle nine times,
it does not return completely to solved, since those movements have a net effect of flipping some
edge cubies. If you look at the cubie-facelet permutation you will see that one of the cycles in
fact has length 18.

Imagine that you’ve experimented with a number of short move sequences and you stumble
across this one: FUllR. You find that the order of this permutation is 36, but when you look at
the cycle notation, you obtain this:

(UR UF)(UL UB BR DR FR DF BL FL DL)
(RFU)(BRU)(DRF UBL DBR)(DLB ULF)(DFL)

Its cycle structure contains cycles of lengths 9, 3, and 2. At first it looks like applying it 9
times might be useful since that would only leave a pair of 2-cycles, but when you try this, you
obtain:

(UR UF)(UB)(UL)(DF)(DR)(DL)(FR)(FL)(BR)(BL)(DLB ULF)

In fact, the long cycles also flip cubies when they operate, so far too much is done by this
operation. However, we noticed that the order of the macro was 36, not 18, and thus if we do 9
more applications, it will undo the flips and it must leave something changed afterwards. When
we do this, the cycle structure is simply:

(UF)(UR)

which flips two cubies in place. The unfortunate thing is that 18 applications of a 5-step macro
or 90 total twists are required to do this.

11



6 What Is a Group?

A group is an abstract mathematical object that can be defined in terms of a few simple axioms
and about which theorems can be proved. The set of permutations of Rubik’s cube provide an
example of a group, but unfortunately, of a large and fairly complex group.

We will be able to use some properties of group theory to manipulate the cube, but, as
before, if we want to learn something about groups, it is a good idea to begin looking at simple
ones with only a few members; the group R corresponding to Rubik’s cube has 8!12!21037 =
43252003274489856000 members, one corresponding to each position reachable from a solved
cube. It’s probably easier to begin by looking at groups with 2 or 4 or 6 members.

6.1 Formal Definition

A group G consists of a set of objects and a binary operation ∗ on those objects satisfying the
following four conditions:

1. The operation ∗ is closed. In other words, if g and h are any two elements of the group G
then the object g ∗ h is also in G.

2. The operation ∗ is associative. In other words, if f , g and h are any three elements of G,
then (f ∗ g) ∗ h = f ∗ (g ∗ h)

3. There is an identity element e in G. In other words, there exists an e ∈ G such that for
every element g ∈ G, e ∗ g = g ∗ e = g.

4. Every element in G has an inverse relative to the operation ∗. In other words, for every
g ∈ G, there exists an element g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.

For those who desire the absolute minimum in conditions, see the footnote2.

Notice that one of the properties that you are used to in most systems is not necessarily
present in a group: commutativity. In other words, there may exist elements g and h of G such
that g ∗ h 6= h ∗ g. Notice also that the definition about says nothing about a group being finite,
although in this paper we will consider mostly finite groups, although in the case of the R, very
large finite groups.

Since there is only one operation ∗ we often omit it and write gh in place of g ∗ h. Similarly,
we can define g2 = gg = g ∗ g, g3 = ggg = g ∗ g ∗ g and so on. g0 = e, and g−n = (g−1)n.
Because of associativity, these are all well-defined.

2In fact, there is a slightly simpler and equivalent definition of a group. Only a right identity and a right inverse are
required (or a left identity and a left inverse). In other words, if there is an e such that g ∗ e = g for all g ∈ G and for
every g ∈ G there exists a g

−1 such that g ∗ g
−1 = e then you can show that e ∗ g = g and that g

−1 ∗ g = e. This can
be done by evaluating the expression g

−1 ∗ g ∗ g
−1 ∗ (g−1)−1 in two different ways using the associative property.
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6.2 Examples of Groups

You are already familiar with a few groups, but most of the best-known groups are infinite: the
integers under addition, the rational numbers under addition, the rational numbers except for 0
under multiplication, the real numbers or complex numbers under addition, the real or complex
numbers except for 0 under multiplication. All of these groups are infinite and commutative.
(Commutative means that a∗b = b∗a for every a and b in the group.) A group that is commutative
is called an abelian group.

The natural numbers (= {0, 1, 2, 3, . . .}) under addition do not form a group—there is an
identity (0), but there are no inverses for any positive numbers. We can’t include zero in the
rational, real, or complex numbers under multiplication since it has no inverse.

The so-called trivial group consists of one element, 1, and satisfies 1 ∗ 1 = 1 is the simplest
group. Since a group has to contain the identity element, the trivial group is the smallest group
possible.

If you know about modular arithmetic, then if the operation is addition modulo n, the n
elements 0, 1, . . . , n − 1 form a group under that operation. This is a finite commutative group.
If p is prime, then multiplication modulo p forms a group containing p − 1 elements: 1, 2, . . . ,
p − 1. If p is not a prime then the operation does not form a group. For example, if p = 6 there
is no inverse for 2: 2 ∗ 1 = 2, 2 ∗ 2 = 4, 2 ∗ 3 = 0, 2 ∗ 4 = 2 and 2 ∗ 5 = 4. (Remember
that the “∗” represents multiplication modulo 6.) When two numbers, neither of which is zero,
multiply to yield zero, then the system is said to have zero divisors. When a modular system
under multiplication has no zero divisors it forms a group.

In the group based on addition modulo n, if you begin with the element 1, you can get to
any element in the group by successive additions of that element. In the group of order 5, you
have: 1 = 1, 2 = 1 + 1, 3 = 1 + 1 + 1, 4 = 1 + 1 + 1 + 1 and 0 = 1 + 1 + 1 + 1 + 1. The
same idea holds for any n. In this case we say that the group is generated by a single element (1
in this case), and such groups are called cyclic groups, since successive additions simply cycle
through all the group elements. For this same group corresponding to n = 5, the element 3 is
also a generator: 1 = 3 +3, 2 = 3 +3 +3 +3, 3 = 3, 4 = 3+3 +3 and 5 = 3+ 3+ 3+ 3+3.
Does that group have any other generators?

For any particular geometric object, the symmetry operations form a group. A symmetry op-
eration is a movement after which the object looks the same. For example, there are 4 symmetry
operations on an ellipse whose width and height are different:

1: Leave it unchanged
a: Rotate it 180◦ about its center
b: Reflect it across its short axis
c: Reflect it across its long axis

The group operation consists of making the first movement followed by making the second
movement. Clearly 1 is the identity, and each of the operations is its own inverse. We can write
down the group operation ∗ on any pair of elements in the following table:
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∗ 1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

The group of symmetries of an equilateral triangle consists of six elements. You can leave it
unchanged, rotate it by 120◦ or 240◦, and you can reflect it across any of the lines through the
center and a vertex.

In the same way, the group of symmetries of a square consists of eight elements: the four
rotations (including a rotation of 0◦ which is the identity) and four reflections through lines
passing through the center and either perpendicular to the edges or the diagonals. In general, a
regular n-gon has a group of 2n symmetries which is usually called the dihedral group.

A circle has an infinite number of symmetries. It can be rotated about its center by any angle
θ such that 0 ≤ θ < 2π or it can be reflected across any line passing through its center.

6.3 Permutation Groups

The most important example (since we’re supposed to be fixated on Rubik’s cube as we read this)
is that certain sets of permutations also form groups. Since a permutation is just a rearrangement
of objects, the group operation is simply the concatenation of two such rearrangements. In other
words, if g is one rearrangement and h is another, then the rearrangement that results from taking
the set of objects and applying g to it, and then applying h to the rearranged objects is what is
meant by g ∗ h.

To avoid a possible misunderstanding, when we speak about the Rubik’s cube group, the
group members are move sequences and the single operation is the act of doing one sequence
followed by another. At first it’s easy to get confused if you think of rotating the front face as a
group operation. The term “move sequence” above is not exactly right either—move sequences
that have the same final result are considered to be the same. For an easy example, F and F5 are
the same group element.

The Rubik’s cube group is simply the set of all possible permutations of the facelets achiev-
able with twists of the cube faces. To combine two of these permutations, we simply apply one
after the other. This, of course, is a huge group. Since this group is so prominent in this paper,
we’ll give it a special name: R.

In any permutation group the identity permutation that leaves all the objects in place will,
of course, be the group identity. The inverse of a permutation is the permutation that exactly
undoes it. To multiply two permutations together, just pick each element from the set of objects
being permuted and trace it through. For example, if the set of objects that are to be permuted
consists of the six objects {1, 2, 3, 4, 5, 6} and we wish to multiply together (1 2 4)(3 6) and
(5 1 2)(4 3) we can begin by seeing what happens to the object in box 1 under the influence of
the two operations. The first one moves it to box 2 and the second moves the object in box 2 to
box 5. Thus, the combination moves the object in box 1 to box 5. Therefore, we can begin to
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write out the product as follows:

(1 2 4)(3 6) ∗ (5 1 2)(4 3) = (1 5 . . .

We write “. . .” at the end since we don’t know where the object in box 5 goes yet. Let’s trace
5 through the two permutations. The first does not move 5 and the second moves 5 to 1, so (1 5)
is a complete cycle in the product.

Here’s what we have, so far:

(1 2 4)(3 6) ∗ (5 1 2)(4 3) = (1 5) . . .

We still need to determine the fates of the other objects. So far, we haven’t looked at 2, so
let’s begin with that. The first permutation takes it to 4 and the second takes 4 to 3 so we’ve got
this:

(1 2 4)(3 6) ∗ (5 1 2)(4 3) = (1 5)(2 3 . . .

Doing the same thing again and again, we find that the pair of permutations takes 3 to 6, that
it takes 6 to 4, and finally, it takes 4 back to 2. Thus the final product of the two permutations is
given by:

(1 2 4)(3 6) ∗ (5 1 2)(4 3) = (1 5)(2 3 6 4).

From now on we’ll omit the “∗” operator and simply place the permutations to be multiplied
next to each other. As an exercise, verify the following product of permutations of the 9 objects
{1, 2, . . . , 9}:

(1 2 3)(4 5)(6 7 8 9) (2 5 6)(4 1)(3 7) = (1 5)(2 7 8 9)(3 4 6).

As we noticed when we looked at permutations of the facelets of Rubik’s cube, the order
makes a difference: (1 2)(1 3) 6= (1 3)(1 2) since (1 2)(1 3) = (1 2 3) and (1 3)(1 2) = (1 3 2).

Let’s look in detail at a particular group—the group of all permutations of the three objects
{1, 2, 3}. We know that there are n! ways to rearrange n items since we can chose the final
position of the first in n ways, leaving n−1 ways to chose the final position of the second, n−2
for the third, and so on. The product, n · (n−1) · (n−2) · · ·3 ·2 ·1 = n! is thus the total number
of permutations. For three items that means there are 3! = 6 permutations:

(1), (1 2), (1 3), (2 3), (1 2 3) and (1 3 2).

Table 1 is a “multiplication table” for these six elements. Since, as we noted above, the
multiplication is not necessarily commutative, the table is to be interpreted such that the first
permutation in a product is chosen from the row on the top and the second from the column on
the left. At the intersection of the row and column determined by these choices is the product of
the permutations. For example, to multiply (1 2) by (1 3) choose the item in the second column
and third row: (1 2 3).

If we make a similar table of the symmetries of an equilateral triangle 4ABC (with A, B
and C listed counter-clockwise) as described above whose elements are 1, rotate 120◦ = R1,
rotate 240◦ = R2, flip across axis A, B or C (FA, FB, FC), then you would obtain table 2.
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(1) (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
(1) (1) (1 2) (1 3) (2 3) (1 2 3) (1 3 2)

(1 2) (1 2) (1) (1 3 2) (1 2 3) (2 3) (1 3)
(1 3) (1 3) (1 2 3) (1) (1 3 2) (1 2) (2 3)
(2 3) (2 3) (1 3 2) (1 2 3) (1) (1 3) (1 2)

(1 2 3) (1 2 3) (1 3) (2 3) (1 2) (1 3 2) (1)
(1 3 2) (1 3 2) (2 3) (1 2) (1 3) (1) (1 2 3)

Table 1: Multiplication of permutations of 3 objects

1 FA FB FC R1 R2
1 1 FA FB FC R1 R2

FA FA 1 R2 R1 FC FB
FB FB R1 1 R2 FA FC
FC FC R2 R1 1 FB FA
R1 R1 FB FC FA R2 1
R2 R2 FC FA FB 1 R1

Table 2: Multiplication of symmetries of an equilateral triangle

If you look carefully at tables 1 and 2, you can see that they are really the same—the only
difference is the names of the permutations. If you substitute 1 for (1), FA for (1 2), FB for
(1 3), FC for (2 3), R1 for (1 2 3) and R2 for (1 3 2), the two tables are identical, so in a sense,
the two groups are identical and we call them isomorphic.

In fact, it is easy to see why this is the case. The symmetries of 4ABC just move the letters
labeling the vertices around to new locations and the six symmetries of the triangle can arrange
them in any possible way, so in a sense, the triangle symmetries rearrange A, B and C and the
permutation group rearranges the objects 1, 2 and 3.

This group that contains all the permutations of three objects is called the symmetric group
on three objects. In general, the group consisting of all the permutations on n objects is called
the symmetric group on n objects. Since there are n! permutations of n objects, that is the size
of the symmetric group.

Thus when you read in your group theory text that there are exactly two groups of order 6,
what this means is that every group, with an appropriate relabeling of the members of the group,
will be like one of those two groups. When two groups have this relationship, we say that they
are isomorphic. (The groups in tables 1 and 2 are the same; the other group of order six is the
one corresponding to addition modulo 6, described in Section 6.2.)

A permutation group does not have to include all possible permutations of the objects. If we
consider the R as a permutation group, there is obviously no permutation that moves an edge
cubie to a corner cubie and vice-versa. The group consisting of the complete set of permutations
of three objects shown in table 1 contains various proper subsets that also form groups:

{1}, {1, (1 2)}, {1, (1 3)}, {1, (2 3)}, and {1, (1 2 3), (1 3 2)}. (2)
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These subsets of groups that are themselves groups under the same operation are called
subgroups. The group R is a subgroup of the group of all permutations of 48 items.

6.4 Properties of Groups

This paper is not meant to be a complete course in group theory, so we’ll list below a few of
the important definitions and some properties satisfied by all groups, the proofs of which can be
found in any elementary introduction to group theory or abstract algebra.

1. The identity is unique and every element of G has a unique inverse.

2. The order of an element g ∈ G is the smallest positive integer n such that gn = e. In a
finite group every element has a finite order.

3. The order of a group is the number of elements in it. if g ∈ G then the order of g divides
evenly the order of G.

4. We say that H is a subgroup of a group G if H ⊂ G and H itself is a group under the same
binary operation ∗ that’s used in G. If H is a subgroup of G then the order of H divides
evenly into the order of G.

5. If H and K are both subgroups of the same group G, then H ∩ K is also a subgroup of G.

Using as an example the symmetric group on three objects displayed in table 1, the order
of (1 2) is 2, the order of (1 2 3) is 3, and both 2 and 3 divide 6, the order of the group. The
proper subgroups of the symmetric group listed in equation 2 have orders 1, 2, and 3—again, all
divisors of 6, as they should be.

Any pair of subgroups in that list only have the identity element in common, so clearly the
intersection of any two of them is also a group, although it is the trivial group.

If we look at the symmetric group G on 4 objects (the group of order 4! = 24 that contains all
the permutations of 4 objects), let H be the subgroup of G that consists of all permutations that
leave the element 1 fixed (but with no further restrictions), and let K be the set of permutations
that leave 2 fixed.

Then we have:

H = {(1), (2 3), (2 4), (3 4), (2 3 4), (2 4 3)}

K = {(1), (1 3), (1 4), (3 4), (1 3 4), (1 4 3)}

H ∩ K = {(1), (3 4)},

illustrating that the intersection of two subgroups is also a subgroup (and in this case, the inter-
section is the set of all permutations that leave both 1 and 2 fixed).

For the symmetric permutation groups, it is easy to see why the order of an element has to
divide the order of the group. As we saw in Section 5.1, we can write any particular permutation
down as a set of cycles, and the order of that permutation is simply the least common multiple
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of the cycle lengths. Since there are n elements that are moved by the permutations, the longest
cycle can have length at most n, so all the cycle lengths are thus n or less. But the order of the
group is n!, so clearly the LCM of a set of numbers less than n will divide n!.

7 Simple Subgroups of the Rubik Group

In its total glory, a jumbled Rubik’s cube is difficult to unjumble, especially when you are a
beginner. A common method to learn about complex situations is to look first at simpler cases
and learn as much as you can about them before tackling the harder problem.

One way to simplify Rubik’s cube is to consider only a subset of moves as being allow-
able and to learn to solve cubes that were jumbled with only those moves. If you do this, you
are effectively reducing the number of allowable permutations, but you will still be studying a
subgroup of the full Rubik group.

Let’s consider a few subgroups. You may wish to investigate these yourself. The Rubik
program contains a “macro gizmo” that may make this easier. If you would like to investigate
the positions achievable using a limited set of moves, define each of those moves as a macro and
put all of them in the macro gizmo. Then make moves from an initialized cube using only macro
gizmo entries. In fact, if you place the macro gizmo on top of the control panel of Rubik, you
will not press any other buttons by accident. If you restrict your moves to any of these subgroups,
the cube will be easier to solve.

The list below is a tiny subset of the total number of subsets of the whole group, but these
are “practical” examples in that you can experiment with a real cube making only the moves in
the indicated subgroups. In a later section, we will examine in more detail more general (but less
practical) subgroups of R

1. Single face subgroup. In this subgroup you are only allowed to move a single face.
This group is not very interesting, since there are only 4 achievable positions including
“solved”, but it is a proper subgroup of the whole group.

2. Two opposite faces subgroup. This is also a fairly trivial group since twists of two op-
posite faces are independent. Still, it has 16 elements and is an example of what is known
as a direct product group. Beware: if you are allowed to turn two adjacent faces, the
subgroup is enormous: 73483200 members.

3. F-R half-turn subgroup. In this group, you are allowed to move either the front face or
the right face by half-turns. This subgroup is of order 12 and we have already done a bit
of analysis of this situation in Section 3.1.

4. The slice subgroup. In this group, you can only move the center slices. The subgroup
can be further restricted by requiring that one, two, or three of those slices must make
half-turns only. The full slice group contains 768 members. If one of the slices must be a
half-turn, there are 192 members. If two are half-turns, there are 32 group members, and
if all three moves must be half-turns, there are only 8 members.
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8 How Many Cube Positions Can Be Reached?

Ideal Toy Company stated on the package of the original Rubik cube that there
were more than three billion possible states the cube could attain. It’s analogous to
MacDonald’s proudly announcing that they’ve sold more than 120 hamburgers.

—J. A. Paulos, Innumeracy

In Section 6 we said that the total number of reachable positions from a solved cube is the
following huge number: 8! · 12! · 210 · 37 = 43252003274489856000 = 227 · 314 · 53 · 72 · 11.
How was this calculated? That’s what we’ll investigate in this section, but we’ll need to learn to
use some mathematical tools to do so. We can also investigate, with these same tools, the orders
of some of the subgroups of the full cube group R.

8.1 Even and Odd Permutations

In this section we will show that all permutations can be divided into two groups—those with
even and odd parity. Just as is the case of addition of whole numbers, combining two permuta-
tions of even parity or two of odd parity results in a permutation of even parity. If only one of
the two has odd parity, the result is odd.

Notice the following:

(1 2) = (1 2)

(1 2)(1 3) = (1 2 3)

(1 2)(1 3)(1 4) = (1 2 3 4)

(1 2)(1 3)(1 4)(1 5) = (1 2 3 4 5)

(1 2)(1 3)(1 4)(1 5)(1 6) = (1 2 3 4 5 6)

and it is not hard to prove that the pattern continues. This shows that any n-cycle can be ex-
pressed as a product of 2-cycles. If n is even, there are an odd number of 2-cycles and vice-
versa. Since every permutation can be expressed as a set of disjoint cycles, this means that every
permutation can be expressed as a product of 2-cycles. For example:

(1 4 2)(3 5 6 7)(9 8) = (1 4)(1 2)(3 5)(3 6)(3 7)(9 8).

Obviously, there are an infinite number of ways to express a permutation as a product of
2-cycles:

(1 2 3) = (1 2)(1 3) = (1 2)(1 3)(1 2)(1 2) = (1 2)(1 3)(1 2)(1 2)(1 2)(1 2) · · ·

but it turns out that for any given permutation, the number of 2-cycles necessary is either always
even or always odd. For this reason, we can say that a permutation is either even or odd, de-
pending on whether the representation of that permutation requires an even or odd number of
2-cycles.
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This is not too hard to prove. Suppose that we consider a permutation of the set {1, 2, . . . , n}
that moves 1 to x1, 2 to x2, 3 to x3 and so on. All the xi are different, and are just the numbers
from 1 to n in some order. Consider the product:

∏

1≤j<i≤n

(xi − xj) = (x2 − x1)(x3 − x1) · · · (xn − x1)(x3 − x2) · · · (xn − xn−1) (3)

If you have never seen the Π-product notation before, the Greek symbol Π (pi) in front
indicates a collection of things to be multiplied. In the example above, it means to multiply
together all possible terms of the form (xi − xj) where 1 ≤ i < j ≤ n. It heightis similar to the
Σ notation for summation, if you have seen that before. If you find it easier to understand, the
product notation above has the following alternate representation where both i and j step up one
at a time:

∏

1≤j<i≤n

(xi − xj) =

n−1
∏

i=1

( n
∏

j=i+1

(xi − xj)

)

Since all the xi are different, every term in the product is non-zero, so the product itself is
also non-zero, but it may be positive or negative. If the product is negative, we will call the
permutation odd and if the product is even, we’ll call it even.

First, let’s check to see that the definition seems to make sense, at least in a few simple cases.

The permutation that swaps 1 and 2, (1 2) has x1 = 2 and x2 = 1, so the product has only a
single term: (x2 − x1) = (1− 2) = −1 which is negative, so a permutation with one cycle (one
is odd) corresponds to a negative product.

Now consider (1 3 2). This should be an even permutation since (1 3 2) = (1 3)(1 2) and
thus the corresponding product should be positive. We have x1 = 3, x2 = 1 and x3 = 2, and the
calculation below shows that indeed the product is positive:

(x2 − x1)(x3 − x1)(x3 − x2) = (1 − 3)(2 − 3)(2 − 1) = (−2)(−1)(1) = +2 > 0.

You can check a couple more if you like, but you’ll discover that it always seems to work,
but why?

The identity permutation should be even (it can be represented by zero 2-cycles, and 0 is
even). For the identity, xi = i for all i, so if i > j, xi − xj = i − j > 0, so all the terms in the
product are positive, making the product positive.

Now, if we multiply any permutation by a 2-cycle, this should change it from even to odd
or vice-versa, so we’d like to see that multiplying on a 2-cycle will flip the sign of the product.
The following technique will work for any 2-cycle, but let’s just look at multiplication of some
permutation by the 2-cycle (1 2).

This 2-cycle exchanges 1 and 2, so in the product, every x1 becomes an x2 and vice-versa.
Let’s write the product in the following form:
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∏

1≤j<i≤n

(xi−xj) = (x2 − x1)(x3 − x1)(x4 − x1) · · · (xn − x1)
(x3 − x2)(x4 − x2) · · · (xn − x2)

(x4 − x2) · · · (xn − x3)
. . .

...
(xn − xn−1)

If we exchange x1 and x2, the sign of (x2 − x1) will flip, but consider the rest of the line.
Each term in the remainder of the line will become exactly the same as the term directly below it,
and the term directly below will become that term, so there will be no additional changes of sign
in the rest of the terms of the product. (In other words, when you substitute x2 for x1 in (x3−x1)
it becomes (x3 − x2) but when you substitute x1 for x2 in the term below it, (x3 − x2), you
obtain (x3 − x1) so both substitutions together leave the product unchanged.) Hence, only one
term changes sign, so the product will flip from positive to negative or vice-versa, completing
the proof.

It is clear that if you look at all possible permutations of a set of objects, exactly half of them
will have even parity and the other half, odd. In fact, an important subgroup of the symmetric
group on n objects (the group of all possible permutations), the subset that consists of just the
even permutations forms a subgroup called the alternating group on n objects. (Obviously, the
subset of the odd permutations does not form a subgroup since it is missing the identity.) The
alternating groups on 5 or more objects are the first examples of so-called simple groups that you
will encounter in any formal class on group theory.

8.2 Parity and the Cube

We know that every possible permutation of the cube can be achieved by some combination of
single turns of one face, and it is also easy to see that every face turn has even parity with respect
to the movements of the cubies. The cycle structure for a single clockwise quarter-turn of the
front face is this:

(FL UP FR DF)(ULF UFR DRF DFL)

which clearly has even parity since each of the 4-cycles can be written as a product of three
2-cycles for six total 2-cycles making the parity even. This means that there is no combination
of moves of the cube that will exchange a single pair of cubies because that would correspond to
an odd permutation of the cubies.

A cycle of three cubies of the same kind is possible, or an exchange of two pairs, both edges,
both corners, or one of each. If the goal of solving Rubik’s cube were simply to get the corner
cubies and edge cubies into their correct positions but not to worry about whether they were
oriented correctly, then if you were to break the cube apart and reassemble it at random, on
average half of your reassemblies would result in a solvable cube.

But usual solution does require that you get the orientations of the edge and corner cubies
correct, and it turns out that there are additional restrictions on these orientations. Let’s consider
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Figure 1: Preservation of Edge Parity

first the orientations of the edge cubies where we will see that an even number of them must be
flipped, so they, too, satisfy a parity condition.

Imagine a cube in outer space held in space such that the center cubies stay fixed as the other
cubies turn around them. If you imagine a set of three-dimensional coordinate axes whose origin
is at the center of the cube and that such that each axis goes through the center of a pair of center
cubies, then for each axis, there are four edge cubies whose outer edge is aligned with that axis.
Each axis has a positive and a negative direction, and let us mark the outer edge of each cubie
with an arrow that is aligned with the positive direction of the axis parallel to it in the solved
configuration.

At any stage, you can look at the arrows on each edge cubie’s outer edge to see if they are
aligned with their current axis. We will show that any single turn of a face changes the orientation
of exactly two of them (an even number of them), so it is impossible with any number of twists
to flip exactly one cubie in place.

Figure 8.2 illustrates the results of a 90◦ counter-clockwise rotation: the arrow configuration
on the left will be converted to the arrow configuration on the right. It is clear that exactly two of
the arrow directions will be flipped. Thus every turn of a face will flip exactly two arrows, so at
any stage, an even number of the edge cubies will be flipped since in the original configuration
zero of them were flipped. (The crossing arrows in the middle of each face represent two of the
fixed reference axes. The third axis points at you from out of the paper.)

The corner cubies satisfy a slightly different condition: the total rotation of all eight must be
zero. Imagine the cube in a solved configuration, put a mark on the top face of all the top corner
cubies and a mark on the bottom face of all the bottom corner cubies. After some number of
twists of the cube faces, not all of the marks will be on the top and bottom of the cube.

If we look at any corner on a line of sight passing through the center of the cube, there are
three possible orientations of each corner cubie: the mark can be on the top or bottom (in which
case we will call its rotation 0◦) it can be rotated 120◦ clockwise (and call this rotation 120◦) or
it can be rotated by 240◦ clockwise (called 240◦). The claim is that if you add all these rotation
numbers for all the corner cubies, you will obtain a number that is a multiple of 360◦. In other
words, the total rotation is a multiple of 360◦.

To see this, we can again look at what a single face turn does. If every face turn preserves
this condition, then so will any combination of them. If you look at what happens with a single
quarter-turn of a face, two of the faces are turned 120◦ clockwise from where they were before,
and the other two are turned 120◦ counter-clockwise, which is the same as a 240◦ clockwise
rotation. Thus a total rotation of 2 × 120◦ + 2 × 240◦ = 720◦ is applied to the four corner
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cubies, so we are done.

This means that if the cube were assembled randomly, only one third of the assemblies could
be manipulated to put the corner cubes in a correct orientation. One third of the time you’d be
off by a total of 120◦ and another third of the time you’d be off by 240◦.

OK, now we are finally in a position to count the total number of configurations that can be
reached from a solved cube.

First, let’s consider the number of configurations that could be constructed with no con-
straints. In other words, if you pop the cube apart with a screwdriver, how many ways can you
put it together? There are 8 possible locations for each corner cubie, and if all possible arrange-
ments were possible, there would be 8! rearrangements. Similarly, there are 12! rearrangements
of the edge cubies. Each corner cubie could be in any of 3 rotations, so there are 38 ways of
aligning the corner cubies and similarly there are 212 flipping configurations of the edge cubies.

The grand total of configurations is thus: 8! · 12! · 38 · 212. But only 1/3 of them will have
the rotations of the corner cubies right, only 1/2 of those will have the edge-flipping parity right,
and only 1/2 of those will have the correct cubie-rearrangement parity. Thus the total number of
reachable configurations from a solved cube is:

(8! · 12! · 212 · 38)/(3 · 2 · 2) = 43252003274489856000.

A cube reassembled at random after breaking it apart would only have one chance in twelve of
being solvable.

9 Change of Coordinates

Suppose you have a block of metal and you need to drill a hole sideways through it. You have a
drill press, but it only drills holes straight down. To drill your hole, you’d turn your block so that
the side into which you need to drill is up, you’d drill the hole, and finally turn your piece back
until the hole is sideways.

This is closely related to how most people solve Rubik’s cube. They know macros that fix
very particular things, like, for example, a macro that can flip two particular edge cubies in place
leaving all the rest of the cubies exactly the same as they were before the macro was applied.
Suppose the macro you know flips the front-up and the left-up edge cubies in place, but to solve
the particular jumbled cube you’re holding, you need to flip edge cubies opposite each other on
the bottom. You’d turn the cube over and then do two twists to put the cubies that need flipping
in the front-up and left-up positions, apply the macro, and then undo the two twists. The two
preparatory twists are like twisting the block sideways and putting it under the drill. Drilling the
hole is like applying the macro, and undoing those two preparatory twists is like taking the block
out of the drill press and setting it right-side-up again.

In mathematical terms, we can think of the movement of the block as a change of coordi-
nates. If you think of the z-axis as pointing straight up, then putting the block under the drill
is equivalent to, say, moving the block’s x-axis to the z-axis of the world. This is a change of
coordinates, and hence the title of this section.

23



On the cube these preparatory operations are almost always three or fewer twists. The macros
can be complicated, but they’re worth memorizing since you only need a small number of them.

If we use the letter M to represent the permutation corresponding to the macro and we
represent by P the operation that twists the faces so that the ones you want to operate upon are
set up for M , then the inverse of P , P−1 is the operation to restore the cubies that are not affected
by M to their initial conditions. You would write the entire operation together as PMP −1.

You will see this form over and over in books on group theory, but sometimes in the opposite
form: P−1MP . This opposite form is effectively just thinking of the operation from the macro’s
point of view—the cube was initially moved to the wrong configuration, so to set up, you have to
undo the moves that made it wrong. Then the operation is performed followed by the moves to
put it back in the wrong position (“wrong” only from the point of view of the macro, of course).

9.1 Change of Coordinates Exercises

Although it is not difficult, this is perhaps the most important single idea that you need to use to
solve a jumbled cube. If you’d like to be sure you understand it, do the following exercise with
the Rubik program.

When the program starts up, you will see “Flip UF, UL” in the “Defined Macros” choice area
and a solved cube will be displayed. Click once on the “Flip UF, UL” area and those two cubies,
the up-front and the up-left, will be flipped in place. Click again, and the cube will be restored
to solved. The idea is that the macro does a very precise thing—it flips the two cubies in those
slots, no matter what they are. Click on the up-face to turn it a quarter turn clockwise and again
click on the macro. Again, it flips the two cubies currently in the up-front and up-right locations
in place no matter what colors they are and leaves the rest of the cube unaffected.

Click again to put them back, and then turn the top face back to solved (or just click the
Reset button).

If you want to see the macro that does the two flips in action, notice that as soon as you
clicked on it, its macro pattern appeared in the “Current Macro” area. If you click in that area
and then press the return key on your keyboard, you can watch Rubik run through the steps and
convince yourself that the macro will really work.

Now, use the “Input Cube” command under the “Edit” pull-down menu to bring up the cubie
editor. Use the editor to change the colors of the up-front and up-back cubies so that they are
flipped. (If you’re using the default coloration, cube U8 should be red, cube F2 white, cube F8
yellow and cube D2 red. Click on the Finish button and Rubik should display a cube with those
two edge cubies flipped. (Remember that you can look at the rear view of the cube to convince
yourself that you’ve got it right.)

Now, suppose you had somehow gotten the cube to this condition, almost solved and you
need to finish the job. You know how to flip the UF and UL cubies in place, but only one of them
is right. But if you give the back face a clockwise turn and then the left face another clockwise
turn, the two bad cubies are in a position where the macro can operate on them. Apply the macro
and then undo the preparatory setup by turning the left face counterclockwise and then the back
face counterclockwise. Thus P = BL so P−1 = lb, and the M is the “Flip UF, UL” macro:
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M = FRBLUlUbrfluLu.

By the way, here’s an easy way to set up the cube for this example that obviates the use of the
“Input Cube” command: From a solved cube, click on “Flip UF, UL”, then click on the up-face
to give it a quarter-turn. Apply the “Flip UF, UL” macro again, and twist the up-face back to its
original position.

Do you see why this works? This is almost like the PMP−1 idea except that we applied
an M−1 at the end. (The P is the “Flip UF, UL” macro and since the order of that macro is 2,
P−1 is the same as P . The M is the quarter-turn of the top face.) The total operation is thus
PMP−1M−1 which is called a commutator and leads us smoothly into the next topic.

10 Commutators

If A and B are two elements of a group (are two permutations, for example), then the commutator
of A and B, sometimes written “[A, B]” is defined to be ABA−1B−1. More often you’ll see it
defined as A−1B−1AB, but the difference is unimportant since it just reverses the roles of each
permutation with its inverse.

Why are they useful, and why would anyone ever have come up with this concept in the first
place?

If this is the first time you have ever looked at mathematical objects like groups, it may be
the first time you’ve ever run across a system where the main operation is not commutative. A
system (including a group) where the order of operation does not matter is called commutative.
In other words, a group is commutative if for every two elements a and b in the group, a∗b = b∗a.
As we’ve noticed, this is certainly not the case with R.

In a commutative system, the commutator of a and b would be aba−1b−1, but since the order
of operations in a commutative system is unimportant, we can reverse the order of the middle
two objects:

aba−1b−1 = a(ba−1)b−1 = (aa−1b)b−1 = (aa−1)(bb−1) = ee = e,

where e is the identity element of the group. Thus in any commutative group, the commutator
of any two objects is simply the identity, and if we were talking about permutation groups, then
the commutator would not move any objects.

Even in R, although most pairs of operations do not commute, there are some that do. Any
operation commutes with itself, for example, or U and D also commute since they move com-
pletely different sets of cubies.

So for any two permutations in a group, if their commutator is the identity, those permutations
commute. But if they don’t commute, we can think of the commutator as a sort of “measure”
of how non-commutative they are. We will see that if two permutations “almost commute” then
their commutator is relatively “simple”. If they are far from commuting, their commutator will
be complex. Of course the terms “almost commute” and “simple” in this paragraph are not
particularly mathematical topics. (Do not confuse this use of “simple” with “simple group”. The
word “simple” is used in this paragraph in a completely non-rigorous manner.)

25



Here’s an example. In cycle notation, let a = (1 2 3 4 5 6)(7 8 9)(10 11 12 13 14) and
b = (9 7)(15 16 17 18 19 20). Although both of them move a lot of elements, if you work it
out, the commutator [a, b] = (7 9 8). If you think about it, it should be clear why this happens.
Although both permutations move a lot of objects, the only ones that are involved in common
cycles in the two permutations are 7, 8 and 9. The permutation a moves, for example, 1, 2, 3, 4,
5 and 6 one step forward in a cycle, but since b does not move any of them, they are left in place,
so the a−1 in the commutator undoes the action of a on all six of those elements.

Notice that we cannot say that two permutations are almost commutative if they only move
a small number of objects in common. In the example below, only the object 6 is moved by the
two permutations, but their product actually tangles up all the elements that either moves into
one giant cycle:

(1 2 3 4 5 6)(6 7 8 9 10) = (1 2 3 4 5 7 8 9 10 6).

Also notice that two permutations may be completely commutative even if they both move
all of the elements:

(1 2)(3 4) ∗ (1 3)(2 4) = (1 4)(2 3) = (1 3)(2 4) ∗ (1 2)(3 4).

The idea that permutation “almost commute” when they do not move many elements in common
is only a rule of thumb that can, at times, be completely incorrect.

Let’s look at a practical use of the commutator concept to build a very useful macro: the
“Flip UF UL” macro we used in Section 9.1.

Here is the strategy: We will find a series of cube moves that leaves the top face completely
unchanged except that a single edge cubie on it is flipped. This is easier than it sounds—although
we have to be careful with the top layer, our operation can arbitrarily trash the lower two levels.

If we have such a macro M , we’ll apply it to flip the one cubie on the top. Then we’ll rotate
the top to put a different cubie in that location, at which point we will undo M by applying M−1.
This will obviously undo all the damage on the lower two layers and flip only the one cubie on
the top layer. But we moved a different cubie into that location by twisting the top face, so a
different cubie will be “unflipped”. After this, we undo the rotation on the top face and we’re
done.

The only slightly tricky part is to obtain the macro M .

You’re welcome to look for your own scheme to find this M (it’s probably easier to search
with the virtual cube, since you’re almost certain to mess up a physical cube in a search like this).
Also, you might consider turning on the “Record” feature in Rubik so you don’t have to write
down the moves as you make them. Or, once you’ve got a macro that works, use the “Undo”
operation to figure out exactly what you did.

Here was my approach: I want to flip the UF cubie in place but other than that, I want to
leave the rest of the U face exactly as it was. (You may wish to follow along with a virtual (or
physical, if you like) cube. First, let’s move the six upper-left and upper right cubies out of the
way with Rl. This puts all six of them on the back of the cube from me.

Next, I turn the front face around 180◦ with FF. This puts the cubie I want to flip in the FD
location with what was originally the up-face pointing down. I’d like to rotate the bottom face,

26



but some of the cubies that were originally on top would be moved, so I’ll bring them back to
the top (which won’t be affected by a turn of the bottom) with Lr.

At this point, the top is pretty pure, but we’ve got the wrong cubie in the UF position. The
correct cubie is in the FD position so if I turn around the front face again I could put it in place,
but it wouldn’t be flipped, and I’d move two of the top pieces. Here’s the trick: rotate the bottom
face (it doesn’t matter which way, but let’s go counter-clockwise for an d move so we can still
see the cubie that interests us in the LB location. If we do a Rl move those same six top cubies
are protected, and a F move puts the cubie (now flipped) in the correct place next to its unflipped
neighbors.

Finally, a rL gets us exactly the macro we need. If you put all those moves together, you’ll
get the 12-move macro M = RlFFLrdRlFLr.

Type those twelve steps into the “Current Macro” window, reset the cube, and click on the
Apply Macro button to make sure you’ve recorded it correctly. If you did, you’ll get the top face
with just the UF cubie flipped and a bunch of damage down below. The grand goal, of course, is
to get the “Flip UF, UR” macro but this should just be MuM−1U.

Assuming you’ve still got the macro M in the “Current Macro” window, reset the cube, click
Apply Macro , then do u, then hold down the shift key and click Apply Macro again followed
by a U. Remember that the shift key causes the inverse operation to be performed. This should
be exactly what you want. To write it out completely, we just need to work out the inverse of M ,
and the whole macro that flips UF and UR in place is:

RlFFLrdRlFLruRlfLrDRlffLrU

The macro that Rubik uses for the same thing, FRBLUlUbrfluLu, is shorter, but probably
not as easy to remember3. Although the derivation our derivation of the macro above may seem
a little obscure, there is a way to think of it in terms of slice moves that is quite intuitive.

Here is effectively the same macro, but with slices instead:

*LDD*Rd*LD*R

Type the macro above into the “Current Macro” window, reset the cube, and then step through
it as you read this text by pressing the right-arrow key on the keyboard.

The first move gets the piece you want to flip on the bottom of the cube leaving the other six
up-pieces on top. Next, twist the bottom 180◦ to get the desired cubie out of the way. The 180◦

is good, since when you reverse that first slice move, it flips the cubie that you eventually want
in the UF position to the correct orientation.

Next, you are going to drive the same middle slice down again and rotate the cubie into that
slot, but if you just do the rotation it will flip that cubie back into the wrong orientation. Thus,
before the slice move you need to get the cubie out of the way which can be done with a quarter
turn of the bottom in either direction (counter-clockwise was chosen for this example so you can
keep your eye on the cubie you’re trying to flip).

3See Section 11 for information about how the macros used by Rubik were obtained.
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That quarter turn is followed by the same slice move you used originally after which you can
rotate the now-flipped cubie into its slot and reverse the slice move to return it to the top.

Textual descriptions like this are often difficult to follow, but you can reset the cube, and
single step the macro again and again until you have an intuitive visual feeling for what is going
on. When the single stepping reaches the end of the macro, the pointer is reset to the beginning
of the macro. (If you then click on the Reset button, you’ll need to click in the “Current Menu”
area to return Rubik’s attention there.) You can back up in single steps by pressing the left-
arrow key.

As a cube-solving macro, the author actually uses a reversed form of this one. It seems
quicker to “push” the slice away than to “pull” it toward you, so what the author does is the exact
same movements except that he is effectively standing facing the back face of the cube. You can
try both and decide for yourself.

Another interesting thing to notice is that if you repeat the macro twice, it cycles three of the
cubies on the bottom of the cube. Try executing it twice to see what is meant4. With the slice
moves, this is an easy-to-remember 16-move macro (if a slice move counts as a single move) to
cycle three slices as well. But really it is only 14 moves, since you’ll note that when the macro
is applied twice in a row the last and first moves in the middle cancel out. But when you do
that, you notice that your sequence includes DDD which can be replaced by d, so it really only
contains 12 moves! Here is the condensed 12-move version:

*LDD*Rd*Ld*Rd*LD*R

Going back to the original problem—to find a macro that flips to top edge cubies in place
without affecting the rest of the cube, one of the reasons this particular commutator works so
well is that the operations you used affected such different parts of the cube. One part of the
commutator simply rotated the top face; the other flipped only one cubie in the top face and did
all its damage to the rest of the cube. As you can see by the result, those two operations, although
they do not commute, are very close to commuting and hence have a simple commutator.

As an interesting exercise, see if you can find a macro in the form of a commutator that twists
one corner cubie clockwise and another counter-clockwise but leaves the rest of the cube as it
was. Hint: you need to find a macro that twists one corner of the top face and does not affect any
other cubies on that face. The answer appears at the end of the next section.

10.1 Commutators for Cycling Cubies

We know from our analysis in Section 8 that it is impossible to find a macro that will exchange
two corner cubies (or two edge cubies) that will not move any other cubies. But it is possible to
find a macro that will move three cubies in a cycle like (UF UB DF) or (URB UFR ULF).

We’ll begin with a method to construct a cycle of three corner cubies using roughly the same
strategy as before. We’ll find a sequence of moves to swap two adjacent corner cubies on the

4You could easily have discovered this yourself since you could learn that the order of your macro is 6, and thus it
might be a good idea to try it 2 or 3 times to see what resulted
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top face leaving the rest of the top face intact. Then we’ll rotate the top face a quarter turn and
undo what we just did. This will re-swap one of the cubes we already swapped, but will undo
all the rest of the cube damage. The net result will be a cycle of three corner cubies since the
permutation structure will look like this: (1 2)(2 3) = (1 3 2).

It is quite easy to find a permutation that swaps two cubies on the up face while leaving the
rest of that face intact: LrDRdl, whose inverse is LDrdRl. Thus the final permutation that cycles
three corner cubies and does nothing else is LrDRdlULDrdRlu.

We can do this with a very simple macro that is constructed as a commutator, but based on
the following observation about a product of permutations:

(A B C D)(A C D B) = (B D C).

It is a bit more difficult to analyze since it involves slice moves that move the cubies that are
being exchanged, so it’s a little difficult to keep track of exactly what cubies are being cycled.
In this case it’s easiest just to do the operation to a cube and see what happens. The permutation
product above amounts to cycling four cubies, reversing two of them and inverting that cycle.

A single slice move, *L, cycles the face cubies as follows: (UF DF DB UB). If we then rotate
the up-face by 180◦ we effectively swap the cubies that were UB and DB, so the inverse of *L
produces the permutation (UF DB UB DF). The product (UF DF DB UB)(UF DB UB DF) = (DF
UB DB). A further turn of the up face by 180◦ returns everything else to its original locations.
In the previous example, we left the cubies on the top face fixed and trashed the rest of the cube;
in this case we effectively left the slice in good shape and again, trashed the rest of the cube. The
full macro to achieve (DB UF UB) is thus *LUU*RUU, and this provides a method to cycle three
cubies. This is a commutator since the inverse of *L is *R and the inverse of UU is UU.

The solution to the problem stated earlier to find a macro that will rotate two corner cubies
in place and will not affect any of the other cubies is based on this operation that rotates a single
corner cubie: LdlfdF. Then rotate the top face, undo the operation, and rotate the top face back.
An answer (and there are, of course, an infinite number of others) is: LdlfdFUfDFLDlu.

10.2 Finding Your Own Commutators

As we saw above, it is nice to have as one of the elements of a useful commutator an operation
that does a very simple thing, at least relative to some subset of the cubies on the cube. This
can then be combined as a commutator with other operations to possibly form useful macros for
cube solution.

It is also nice, of course if the pieces of the commutator are short.

Here are a couple of useful building blocks for commutators. It’s your job to find operations
which, when combined with them, do useful work on the cube.

• FUdLLUUDDRU. This operation is called the monoflip and it flips exactly one cubie on
the top face.

• rDRFDf. This is the monotwist that twists one cubie on a face.
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• FF. This is the monoswap that swaps a pair of edges in a slice.

• rDR. This cycles three corners, but is not quite as useful.

11 Using “Solve” to Find Good Macros

An interesting but very difficult problem is to determine, from any given position, the minimum
number of moves required to convert that position back to a solved cube. The first question that
arises is what is meant by the word “minimum”? In other words, what counts as one move? Most
of the work that has been done in this area is based on two definitions of a move. One is called
the “quarter-turn metric” and the other, the “half-turn metric”. The quarter-turn metric counts as
a move any single rotation clockwise or counter-clockwise of 90◦. The half-turn metric allows a
half-turn as a single move as well.

The “distance” between any two positions is the minimum number of moves required to
convert one to the other, counted in one of the two metrics. Obviously, the distance in the
quarter-turn metric is at least as large as the distance in the half-turn metric, since any half-
turns would have to be replaced by a pair of quarter turns. Or another way to think of it is that
any solution in the quarter-turn metric is also a solution in the half-turn metric, although there
are additional possibilities in the half-turn metric than may (and usually do) provide a shorter
sequence of moves.

The Rubik program currently measures distances in the quarter-turn metric. In fact, if you
look in the little window above the “Current Macro” window labeled “Macro length”, the number
in that window represents the number of quarter-turns required to apply the macro in the “Current
Macro” window.

A related question is this: what is the “worst” possible jumbling of a cube? In other words,
what position or positions require the most moves to return them to solved? This maximum size
of the minimum solution is sometimes called “God’s number”. God’s number is not known, but
there are known bounds on it.

In the quarter-turn metric, it is known that God’s number has to be 24 or more. The position
called “superflip” where all the edge cubies are flipped in place is known to require 24 moves to
solve it. (This was determined by exhaustive search on a computer.) God’s number may, in fact,
be 24 since nobody has ever found a position that is known to require more than 24 moves.

It is possible to obtain a crude lower bound for God’s number with the following observation.
From a solved cube, there are at most 12 possible arrangements after the first twist (six faces,
clockwise or counter-clockwise). After two moves, there are at most 12 · 11 positions, not 122

since one of the 12 moves undoes the original. After three, there are at most 12 · 112 positions,
and following the same reasoning, after n moves, there are at most 12 ·11n−1 possible positions.
Since it takes as many moves to solve a position as to get to that position from solved, n must be
at least large enough that 12 · 11n−1 > 4.32 · 1019 where the second number is the total number
of cube positions. Solving for n tells us that the lower bound must be at least 19. Slightly more
careful calculations (throwing out moves like FFF or FBfb, for example), one can show that
God’s number must be at least 21.
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There are computer programs that can find the minimum number of steps from any given
position to solved, but for each position, they usually require a day or so of computation, and in
bad cases may require months.

The Solve button in Rubik does not find the minimum solution; it only finds one that is
not too long. It looks for a while and then prints the best solution it has found up to that point.
Depending on your computer speed and how much patience you have, you can change what is
meant by “a while”. In the “Edit” pull-down menu, you can set the time spent in a search for a
good solution to either “Long” or “Very Long”.

Although its solutions are not guaranteed to be the best, at least they are usually not too long,
so you can use the program to search for macros.

For example, in Section 10 we found a macro to flip the UF and UL edge cubies in place
that is 26 moves long. If you use the “Input Cube” command to input a cube with just those two
cubies flipped and ask Rubik to solve it, it comes up with a much shorter (14 move) solution:
FRBLUlUbrfluLu. Since this is the method to get from the flipped cubies to solved, you can
invert it to UlULFRBuLulbrf to obtain a macro that goes from solved to the two flipped cubies
configuration. (Actually, in a special case like this, the macro has order two, so the sequence
works either forward or inverted. Generally, however, the solution Rubik finds needs to be
inverted, and it never hurts to do so.)

Obviously this strategy can be applied to find a sequence for any legal macro you’d like to
use. Just set up the situation on an otherwise-solved cube that you’d like to convert to solved,
have Rubik find a set of moves that solves it, and invert those moves. Usually the macros it
finds will not be too bad. For example, the optimal solution for “superflip” requires 24 moves
and Rubik finds a 26 move solution fairly quickly.

On the other hand, Rubik-generated macros may be difficult to memorize for use on a phys-
ical cube. For example, Rubik’s 26-move superflip is FLULbudLfubRlBFFudFFBBRRud (or
its inverse, since it is order-2). But here is a 36-move superflip that is almost trivial to memo-
rize and execute: 2(4(*RU)>R>D)4(*RU). (The number 36 does not include the whole-cube
moves in the turn count, but counts a slice move as two quarter turns, which it really is.) You
can do this one with your eyes closed: “slice-up-slice-up-slice-up-slice-up-turn cube” and repeat
that sequence two more times. The basic pattern: 4(*RU)>R>U makes a pretty nice pattern
to run in demo mode. Just type it into the “Current Macro” window and press the Start Demo
button. If you find those whole-cube moves annoying in demo mode, just take them out and use
4(*RU)4(*DF)4(*BL).

12 How Humans (Even You!) Can Solve the Cube

With patience, you can solve the cube with just 5 macros: one to flip two particular edge cubes,
one to rotate two particular corner cubies, one to cycle three edge cubies, one to cycle three
corner cubies, and one to swap two edge cubies and two corner cubies.

From any jumbled cube, first get all of the cubies in their correct positions (although possibly
flipped and rotated). You will almost certainly have to use the idea of changing coordinates
discussed in Section 9.1 to put the cubies you want to cycle or exchange in the proper places
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with one or two twists that you can undo after you’ve applied the macro.

If you only know how to swap a particular pair of edge and corner cubies at the same time,
it may require a number of preparatory moves to get all four of them in the right positions, so
if you’ve got everything right except for a pair of edge and corner cubies, it’s probably easiest
to get two corners in the right places and exchange them and then the edge repairs can be done
with one or two of the “cycle three edges” commands.

Once all the cubies are in their correct locations, you’ll need to twist and flip some of them.
Use the same strategy you used before—a twist or two will put a pair that need flipping or
rotating in the right places after which you apply the macro and undo the preparatory twists.

This method will obviously work but it will take a long time. The reason is that you are
wasting a huge amount of effort at the beginning by using extremely restrictive macros that
move only a tiny number of cubies when in reality you don’t care what happens to the cubies
that are out of place anyway. Think about putting the first corner in place. You can probably do
that with just a move or two and the second corner won’t be much harder.

People who are good at solving the cube have a whole set of more and more restrictive
macros that get the pieces into position and then they have a set like the five listed above to do
the final work.

Most people tend to solve the cube by first getting the top layer right, then the middle layer,
and finally the bottom. Although this is very straight-forward, it has the disadvantage that once
the top cubies are all in place, almost any twist involves that top layer, so some damage will be
done that needs to be repaired.

The world champion speed-demons often use a different method that avoids this problem.
First they solve a 2× 2 corner of the cube, at which point there are three sides that can be turned
freely with no effect on the solved portion. They next extend that to a 2× 2× 3 block which still
leaves two faces that can be turned without affecting the solved portion, and a lot of useful work
can be accomplished just turning those two faces.

If you search on the internet, it’s easy to find dozens of descriptions of useful cube-solving
macros. A collection of a few useful macros can be found in Appendix B but you’ll have more
fun if you try to work them out yourself.

You can practice setting up for macros and then undoing the setup easily on the virtual cube.
First learn exactly what cubies are affected by the half-dozen or so built-in macros. Then do the
twist or two for the setup of each one, but rather than apply the macro by hand, just click on
it in the window to have it happen instantly. Undo your setup moves and continue. After you
are confident about your use of the macros, you can learn to do them as well, and you’ll be in a
position to solve a jumbled cube without the help of the Rubik program (or a screwdriver).

13 Subgroups of the Cube Group R

In Section 7 we took a cursory look at some of the subgroups of R. In this section we’ll look at
more examples and in addition we’ll learn something about group generators and Cayley graphs.
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13.1 Group Generators

Given a group G (and in this section, we’ll almost always use Rubik’s group R as our group),
then if S ⊂ G is any subset of the group, then the subgroup H generated by S is the smallest
subgroup of G that contains all the elements of S.

Surely such a subgroup exists. If any collection of different subgroups contain all the mem-
bers of S, then their intersection (which is also guaranteed to be a subgroup) also contains all the
elements of S and is contained in all of them. The group G is a subgroup of itself, so there is at
least one group in that intersection.

Intuitively, the subgroup generated by S is the collection of all the elements you can get to
by repeatedly multiplying members of S or their inverses together. In the case of R, it’s the set
of all positions you can arrive at, starting with the jumbled cube and applying only that subset of
moves in any order.

For example, the subgroup of R generated by { F } contains four members. If you’re only
allowed to turn the right face, you can only get to four different cube configurations. The sub-
group generated by { FF } is even smaller: two positions. In other words, if you’re only allowed
to make half-turns of one face, there are only two possible positions you can achieve starting
from solved.

Obviously, the group generated by { F, B, R, L, U, D } is the entire group R—just a small
number of generators can generate a huge group. We are interested, of course, in subgroups that
fall between the extremes mentioned in this and the previous paragraph.

13.1.1 Cyclic groups

The simplest situation, of course, is subgroups generated by a single element g. If there is some
n such that gn = 1, then the entire group is given by {1, g, g2, g3, . . . , gn−1}. (For infinite
groups, which we’re pretty much ignoring here, it may be that gn is never equal to 1, so the
group generated by such a g would consist of {. . . g−2, g−1, 1, g1, g2, . . .}.) Such groups with a
single generator are called cyclic groups (even if they’re infinite). All cyclic groups of the same
order are isomorphic, so, for example, the group generated by F and the group generated by R
behave in essentially the same way.

Since the Rubik group R is finite, any single element of R generates a cyclic subgroup
whose size simply depends on the order of that element. Using Rubik it is easy to find the
orders of group elements; just type them into the “Current Macro” input area and click on the
Macro Order button. If you type an “F” into that input area, the Macro Order command will
tell you it is 4, as you would suspect, but it is easy to try other random (or non-random, of course)
combinations to see what their orders are.

The simple FR has a (perhaps surprisingly large) order of 105, meaning that you would have
to repeat that two-turn combination 105 total times before a solved cube would return to solved.
Try some experiments, especially with commutators. Use Rubik to find the order of RUUdBd.
Can you find any elements with a larger order?

As you’d expect (I hope) changing coordinates will not affect a macro’s order. In other
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words, if the order of P is n, and if Q is any other macro, then the order of QPQ−1 is also n.
Do you see why? Can you prove it?

The order of an element (and hence the order of the cyclic group it generates) has to divide
the order of the entire group which we showed earlier to be:

43252003274489856000 = 227 · 314 · 53 · 72 · 11.

Thus you’re never going to find any elements whose order is divisible by 13, for example.
All their orders must have prime factors among those shown above.

There are some interesting theorems in group theory called the Sylow theorems that tell us
a bit more about the structure of finite groups. We will not state or prove those theorems (you
can find them in any elementary text on group theory), but will simply state that one of them
guarantees that there is at least one subgroup of order 11 of R. How could we find such an
example?

One easy way would be with Rubik. Construct a cube that moves 11 of the 12 edge cubies
in a cycle. We can do that with the “Input Cube” command. Then click on the “Solve” button
and we will be presented (after a short wait) with a macro that undoes this 11-cubie cycle. The
inverse of this will take a solved cubie to a position that is the first step in an 11-cycle, so the
inverse of the macro given to us by “Solve” will do the trick. In fact, we don’t even have to take
that inverse—the order of an element is the same as the order of its inverse, so we can directly
use the result given to us by Rubik. Here’s one such example (by no means guaranteed to be the
shortest such example): ruFBufDBUDbuRRdLLuLLdLLuRR.

See if you can find your own.

By the way, you may come up with a macro of order 22 instead of 11 because the way you
cycled the cubies, after 11 steps some of them are flipped, so 22 steps are required to complete
the loop. In this case, the square of the result will have order 11.

Do you see how you might construct other cyclic groups of various orders? Can you construct
an element of order 55 this way?

13.1.2 The subgroup generated by FF and RR

For our first example of a non-cyclic group defined in terms of generators, et’s begin with a
simple example that we have examined a bit already: the group generated by { FF, RR }.
(Remember that both moves are considered as units—every move of the right face has to be a
half-turn and similarly for the front face. In fact, to emphasize that, let’s give single letter names
to each: φ = FF and ρ = RR.

We know that φ2 = ρ2 = 1 and we found earlier (or we can easily check with Rubik) that
(φρ)6 = (ρφ)6 = 1 and that no smaller power will do. In other words, the order of φρ and also
of ρφ is 6.

If we start looking for possible group members, it is clear that there are only the following
18 possibilities:
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1 (ρφ) (ρφ)2 (ρφ)3 (ρφ)4 (ρφ)5

φ φ(ρφ) φ(ρφ)2 φ(ρφ)3 φ(ρφ)4 φ(ρφ)5

ρ (ρφ)ρ (ρφ)2ρ (ρφ)3ρ (ρφ)4ρ (ρφ)5ρ

The φs and ρs have to alternate or they will cancel to the identity. Furthermore, if there are
more than 6 (φρ) or (ρφ) pairs in a row, that set of 6 will also cancel to the identity. It is clear
that if you multiply any of the elements in the list above by φ or by ρ on the right or left, it will
cancel to something else on the list. Thus the size of the generated subgroup is at most 18.

But there are some duplicates in the list above. We will show one example of a duplicate
pair; there are six similar duplicate pairs in the list above, which will show that the size of the
generated subgroup is 12 (and you can test this with Rubik, if you wish, to see that all 12 are
different).

Here we will show that φ(ρφ)2 = (ρφ)3ρ because they are both inverses of (ρφ)3ρ and the
inverse of a group element is unique. To see that they are both inverses, we just multiply them
together and show that both collapse to the identity:

(ρφ)3ρ · φ(ρφ)2 = (ρφ)3(ρφ)(ρφ)2 = (ρφ)6 = 1.

Similarly, because of repeated cancellations of equal elements in the center, we obtain:

(ρφ)3ρ · (ρφ)3ρ = ρφρφρφρρφρφρφρ

= ρφρφρφφρφρφρ

= ρφρφρρφρφρ

...

= ρρ = 1.

The complete group consists of the members of the top two rows of the 18-element list. Or
the top and bottom row; whichever you prefer—each element on the bottom row is the same as
an element in the middle row. This group can be shown to be isomorphic to the dihedral group on
six objects, which is essentially the set of symmetries of a regular hexagon that you’re allowed
to rotate or flip over.

In fact, a slightly easier to use set of representatives for the members of the group is this (the
parentheses just help visualize the grouping). It’s a good exercise to convince yourself that all
the elements in the list below are different and to try to multiply together various combinations
of them.

1 ρ (ρφ) (ρφ)ρ (ρφ)2 (ρφ)2ρ
φ (φρ) (φρ)φ (φρ)2 (φρ)2φ (φρ)3 = (ρφ)3

This sort of analysis is often possible given a set of relations that the generators satisfy, but
it is often surprisingly difficult to do such an analysis. Who would guess, for example, the the
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group generated by { F, R } satisfying: F4 =R4 = (FR)105 = 1 (plus a few other relationships)
would generate a subgroup containing 73483200 members?

The concept of generators, however, is very powerful when we are working on a puzzle like
Rubik’s cube. The generators are basically the set of moves we allow ourselves to do, and the
size of the generated group is the number of positions achievable from that set of moves.

13.1.3 The Cayley Graph

One nice way to visualize how a group is generated from a set of generators is with a Cayley
graph. A Cayley graph is simply a picture with nodes indicating each group element and arrows
from one to the next when one of the generators will take you from that element to the next. As
an almost trivial example, here is the Cayley graph for the group generated by the single element
F:

1

F

FF

FFF

The Cayley graph for the group examined in the last section and generated by ρ and φ is a
little more interesting. Starting from 1, any element can be obtained from a previously-obtained
element by multiplying it on the left or right by φ or ρ. Obviously, at least some of the time this
will cancel a φ or a ρ that was multiplied on earlier, but eventually you will obtain a complete
list of the elements in the group.

The figure below illustrates the Cayley graph for that group. Elements that can be obtained
from another by multiplying by φ are connected with simple arrows; elements that can be ob-
tained from another via a multiplication by ρ are connected with double-line arrows.

1

ρ (ρφ) (ρφ)ρ (ρφ)2 (ρφ)2ρ

(ρφ)3

(φρ)2φ(φρ)2(φρ)φ(φρ)φ

Let’s examine a more complicated situation: A4, the alternating group on four objects which
was mentioned in Section 8.1. As a reminder, the alternating group on n elements is the per-
mutation group consisting of all even permutations of those objects. An even permutation is a
permutation that contains an even number of 2-cycles.
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Here are the elements of A4:

(1) (1 2 3) (1 2 4) (1 3 4) (2 3 4) (1 3 2)
(1 4 2) (1 4 3) (2 4 3) ((1 2)(3 4) (1 3)(2 4) (1 4)(2 3)

Table 3 is the multiplication table for the alternating group A4.
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(1) (123) (124) (134) (234) (132) (142) (143) (243) (12)(34) (13)(24) (14)(23)

(1) (1) (123) (124) (134) (234) (132) (142) (143) (243) (12)(34) (13)(24) (14)(23)
(123) (123) (132) (13)(24) (234) (12)(34) (1) (143) (14)(23) (124) (134) (243) (142)
(124) (124) (14)(23) (142) (13)(24) (123) (134) (1) (243) (12)(34) (143) (132) (234)
(134) (134) (124) (12)(34) (143) (13)(24) (14)(23) (234) (1) (132) (123) (142) (243)
(234) (234) (13)(24) (134) (14)(23) (243) (142) (12)(34) (123) (1) (132) (143) (124)
(132) (132) (1) (243) (12)(34) (134) (123) (14)(23) (142) (13)(24) (234) (124) (143)
(142) (142) (234) (1) (132) (14)(23) (13)(24) (124) (12)(34) (143) (243) (134) (123)
(143) (143) (12)(34) (123) (1) (142) (243) (13)(24) (134) (14)(23) (124) (234) (132)
(243) (243) (143) (14)(23) (124) (1) (12)(34) (132) (13)(24) (234) (142) (123) (134)

(12)(34) (12)(34) (243) (234) (142) (124) (143) (134) (132) (123) (1) (14)(23) (13)(24)
(13)(24) (13)(24) (142) (143) (243) (132) (234) (123) (124) (134) (14)(23) (1) (12)(34)
(14)(23) (14)(23) (134) (132) (123) (143) (124) (243) (234) (142) (13)(24) (12)(34) (1)

Table 3: The Alternating Group A4
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What we will examine here is the Cayley graph of the alternating group A4 based on two
permutations that generate the entire group: (1 2 3) and (1 2 4).

The following figure shows the Cayley graph with the following conventions. If a group
element x can be obtained from an element y by pre- or post-multiplying it by (1 2 3) then a
simple arrow points from x to y. If y can be obtained from x by pre- or post-multiplication by
the permutation (1 2 4) then a double-line arrow points from x to y.

(12)(34)

(234)

(134)

(13)(24)

(132)

(123)

(1)

(124)

(142)

(14)(23)

(143)

(243)

Since we know that the alternating group is generated by two permutations that cycle three
objects, two of which are the same, it is actually easy to find a subgroup of the Rubik cube
group R that is isomorphic to A4. Just take two permutations that cycle three edge cubies (or
corner cubies, it doesn’t really matter), and as long as two of those cubies are shared, those two
operations will generate a subgroup of R isomorphic to A4.
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Here are two moves that do the trick: rdlFFLDRUFFu, UdLuDFFUdLuD, although there
are dozens of other pairs that would generate similar isomorphic subgroups.

13.1.4 More subgroups of R

It is surprisingly difficult to find small subgroups based on simple sets of generators. The sizes
of the subgroups seem get large fairly rapidly except in the simplest cases. It is certainly pos-
sible to construct small subgroups but they are usually based on fairly complex generators. In
Section 13.1.1, for example, we found a single generator that produced a group of order 11, but
it was based on a generator that is 27 moves long. (Well, Rubik found a 27 move sequence;
there may be shorter ones.)

Listed below are some subgroups that are generated from a small number of generators. As
you can see, most of them would not be too useful for learning how to manipulate the full cube.

Generators Size Factorization

1 F 4 22

2 F, RR 14400 26 · 32 · 52

3 F, R 73483200 26 · 38 · 52 · 7
4 RRLL, UUDD, FFBB 8 23

5 Rl, Ud, Fb 768 28 · 3
6 RL, UD, FB 6144 211 · 3
7 FF, RR 12 2 · 32

8 FF, RR, LL 96 25 · 3
9 FF, RR, LL, BB 192 26 · 3

10 FF, RR, UU 2592 25 · 34

11 FF, RR, LL, UU 165888 211 · 34

12 FF, BB, RR, LL, UU 663552 213 · 34

13 FF, BB, RR, LL, UU, DD 663552 213 · 34

14 LLUU 6 2 · 32

15 LLUU, RRUU 48 24 · 3
16 LLUU, FFUU 1296 24 · 34

17 LLUU, FFUU, RRUU 82944 210 · 34

18 LLUU, FFUU, RRUU, BBUU 331776 212 · 34

19 LUlu, RUru 486 2 · 35

20 LUlu, RUru, LDld 17496 23 · 37

21 LUlu, RUru, LDld, RDrd 52488 23 · 38

22 >F, >L 24 23 · 8
23 *F, U 184320 212 · 32 · 5
24 *F, U, *U 4423680 215 · 33 · 5

In the table above, entry 4 is called the slice-squared group, entry 5 is the slice group, and
entry 6 is the anti-slice group. Entries 19, 20 and 21 are produced by small sets of similar
commutators. Below the double line, entry 22 is the whole-cube group and the other two are
produced with a standard move of the up face combined with one or two slice moves.
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Another interesting observation is that the same subgroup is generated by entries 12 and
13—adding the additional DD move did nothing. This indicates that a DD can be generated by
the other 5 moves, and it can: DD = RRFFBBLLUURRFFBBLL. Similarly, the entire cube
group R can be generated by quarter-turns of only 5 faces:

D = RRLLUURRBBRRLLFFLLuRRLLUURRBBRRLLFFLLUU.

14 Group Homomorphisms

In Section 6.3 we mentioned the fact that the group of all permutations on three objects behaved
exactly the same as the set of symmetries of an equilateral triangle. We said that two groups that
behave identically are called isomorphic.

Two groups are called isomorphic if there is an isomorphism between them. An isomorphism
is a 1 − 1 onto mapping from one group to the other that preserves the group operation.

To state this in a formal way, suppose that we have two groups, G and H where ∗ is the group
operation in G and � is the group operation in H. We say that G is isomorphic to H if there exists
a 1 − 1 onto function f : G → H satisfying the following condition: for every pair g1, g2 ∈ G,
if f(g1) = h1 and f(g2) = h2 then f(g1 ∗ g2) = h1 � h2.

A “1−1 onto function” is one that matches up every element from one set with every element
of another so that all the elements of both are used and each one maps into exactly one other one.

There may be more than one way to do the mapping, but that doesn’t matter—as long as
there is at least one way to do it, the two groups are said to be isomorphic.

If two groups are isomorphic, they are virtually identical—it’s almost as if you just made a
mistake and used different names for exactly the same things. Now this does not mean it’s easy
to find such isomorphisms or to prove that one exists, but it does mean that if you do find one,
you have a way to translate the different names back and forth.

As an example, one very simple group is the set of permutations on the cube that can be
achieved by just twisting the right face. This group obviously has four elements: 1, F, F2 and
F3. Let’s call this group G. A different group, call it H, is the set of all permutations that can
be achieved by twisting the up face. Thus H consists of 1, U, U2 and U3. It is clear that these
two groups behave identically, and we can show that they are isomorphic by checking that the
function f that maps 1 → 1, F → U, F2 → U2 and F3 → U3 satisfies the conditions to be an
isomorphism.

Note that the f above is not the only function with the appropriate properties. Another
function that is an isomorphism maps 1 → 1, F → U3, F2 → U2 and F3 → U. This just shows
that if you swap clockwise and counter-clockwise rotations, they behave pretty much the same
way.

To say that two groups are isomorphic is to put quite a strong restriction on their relation-
ship. If we simply require that the function f preserve the group operation, but do not require
that it be 1 − 1 or onto, we have a different relationship that is called a homomorphism. Of
course an isomorphism is a special case of a homomorphism, but there are many, many more
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homomorphisms available.

Isomorphisms are usually used to show that two apparently different groups are essentially
identical, so they are usually constructed to relate different groups. They can, of course, be
mappings of a group into itself (in which case they are often called automorphisms). Since
the most important group from the point of view of this paper is the cube group R, many of
the examples that follow will be homomorphisms from that group into itself. In general, a
homomorphism can relate any group to any other, but in the special case where a homomorphism
maps a group into itself, it can be called an endomorphism.

Here are a couple of examples of automorphisms involving R and subgroups of it. First,
consider the group G = { 1, F, F2, F3 }. There are two automorphisms of G. The first is not
too interesting, since it maps every element to itself, but another automorphism takes 1 and F2

to themselves but exchanges F and F3. From the point of view of the cube, these two groups are
mirror images—the counter-clockwise moves are swapped with the clockwise groups, but other
than that, their behavior is the same.

There are plenty of automorphisms of the full group R onto itself. Imagine two identical
physical cubes originally in the same orientation, and we take the one on the right and rotate
it 90◦ clockwise about its front face. At this point, the front and back faces have the same
orientation, but the top, right, bottom, and left sides of one correspond to the right, bottom, left
and top sides, respectively, of the other. If we consider any move sequence on one and replace
the letters in it as follows:

F−→F B−→B U−→R R−→D D−→L L−→U
f−→f b−→b u−→r r−→d d−→l l−→u

then the moves on the two cubes will behave in exactly the same way. There are (counting
reflections) 48 automorphisms that are very similar to this and correspond to the symmetries of
a cube.

15 Pretty Patterns

In addition to just solving the cube, it is possible to create many pretty patterns. You can use the
Rubik program to search for your own pretty patterns. Use the “Input Cube” command to draw
in whatever pattern you want, and if it is a legal pattern, Rubik can find a sequence of moves to
“solve” it. The inverse of that solution will generate the pattern from a solved cube.

In the list below, to arrive at each of the patterns you need to begin with a solved cube and
apply the given macro.

These patterns were found on the internet—obviously, the names are not universal. The
itemized list below contains the move sequence to reach the pattern from solved, together with
the name of the macro.

• 2(4(*RU)>R>D)4(*RU): Superflip. Figure P1.

• RDRFrfBDrubUDD: Green Mamba. Figure P2.
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P1 P2 P3 P4

P5 P6 P7 P8

• FFDFFDDLLULLuLLBDDRR: Six Square Cuboids. Figure P3.

• uFFUUlRFFUUFFLru: Christmas Cross. Figure P4.

• RRDuLdLLRBRRUBUrfdFu: Twisted Duck Feet. Figure P5.

• UULLrbRRurDRFFLrFDLLUU: Plummer’s Cs. Figure P6.

• LBBDRbFdlRdUfRRu: Anaconda. Figure P7.

• dFdLBDDFFURbURRFdRFUU: Striped Cube. Figure P8.

16 Miscellaneous Short Topics

The topics here are interesting, but are a bit too short to deserve to have an entire section devoted
to them. They are not in any particular order.

16.1 Rotation of the Center Cubies

On a standard cube, it is impossible to tell after a series of twists whether the center cubie has
the same orientation. Some cubes made for advertising purposes have images on some of the
faces, and if you simply apply the standard cube solution methods, you’ll find that you’ve got
everything correct except that some of the center faces are rotated from their solved positions.
You can observe this with a physical cube: Put a sticker on the U face of a solved cube with an
arrow pointing toward the front face and similarly one on the front face pointing toward the up
face. Then apply the following move:

URLUUrlURLUUrl = 2(URLUUrl)
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At the end, you will find that the arrow on the U face has rotated by 180◦ (and if you had
similarly marked the orientation of the other faces, you would find that this transformation leaves
them unchanged. Here is a transformation that twists U and D by 90◦ each in opposite directions:

RlFFBBRlURlFFBBRld

Although at first it doesn’t look like it, the macro above is (as you might expect) a commuta-
tor. Let P = >F>FRlFFBBRl and let Q = U. Then the macro above is PQP−1Q−1.

And finally, here is one that rotates the U center by 90◦ clockwise and at the same time
rotates the F center cubie 90◦ counter-clockwise:

FbLrUdfDuRlBfU

This is also a commutator. Let P = FbLrUd>R and Q = u, and the macro is equivalent to
PQP−1Q−1.

In exactly the same way as we have seen before, there is a sort of parity associated with the
total twist of the center cubies: the grand total of the twists must add to an even multiple of 180◦.

16.2 Superflip

In Section 11 we mentioned the permutation called superflip that flips every edge cubie in place
and leaves all the corner cubies unchanged. It has been shown that there is a 24 move macro that
achieves superflip and it has also been shown that superflip requires 24 quarter-turns so that it
serves to prove that 24 is a solid lower bound on God’s number (the maximum length of the best
possible solutions to any jumbled cube).

The superflip permutation is interesting in that it is the only permutation that commutes with
every element of R. The set of all permutations that commute with every element in the group
is called the center of the group, and the center of a group is, in fact, a subset of the group. The
center of R is a two-element group consisting of the identity and superflip.

Since at first glance, a solved cube with superflip applied looks pretty messed up, you can
hand a superflipped cube to a friend, have him make two or three moves and hand it back to you
while your eyes are closed. You then apply superflip, and then say something like “. . . and now
it’s almost done. . . ”, open your eyes, and undo the final few twists.

16.3 The Whole-Cube Group

One interesting group that is very easy to study using your physical cube is the whole-cube
group—the rigid symmetries of the cube. It is pretty obvious that there are 24 such symmetries
since the top face can be moved to any of 6 faces, and once there, can be rotated into any of four
positions for a total of 6 × 4 = 24 symmetries. (Notice that if we also allowed mirror images,
there would be 48 total symmetries.)
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To work with the group, we’ll need some names for the group elements. In this section only,
we’ll use the name F to represent a rotation of the whole cube clockwise by 90◦ instead of the
“>F” used by Rubik and similarly for the other rotations.

If you wish to experiment with these permutations, it’s probably a good idea to label the face
cubies on your physical cube with “U”, “D”, et cetera. The advantage of working with this group
is that there’s no way to scramble your cube accidentally. You might try to find subgroups of this
group, for example, and to see what those subgroups amount to geometrically.

It’s a bit of a mess to describe all 24 elements. There are a few obvious ones: 1 (the identity),
F, L, F, R, B, D, FF, RR and UU. (We don’t need LL, BB and DD since LL = RR, et cetera.)
The other 14 permutations can also be expressed as rotations, but unfortunately, about oddball
axes. If we consider the four axes that connect opposite corners of the cube (like corner URF
with corner DLB, et cetera) there are two rotations (120◦ and 240◦) that map the cube to itself
for 8 more permutations. We also have the 6 axes connecting the centers of opposite edges of
the cube, and a rotation of 180◦ about each of these is also a rigid symmetry of the cube.

But rather than invent new names for these rotations, we’ll just list the other ones as products
of the primitive face rotations that we already have. For example, the rotation of 180◦ about the
axis passing through the centers of the edge cubies UL and DR is LFU.

The first table below shows the definitions of the moves in an easier to read form: a cube
that has been opened up. The entry labeled “1” shows the initial configuration and the others
show how those faces are rearranged by the various rotations. This is very useful since the three-
move combinations chosen to represent the last six permutations are somewhat arbitrary: BLU
= DRF, for example.

The second is the multiplication table for the group of rigid moves of the cube. In the list
below, “F” means to grab the front face and turn the entire cube clockwise by a quarter-turn, et
cetera. To multiply RR with FL, for example, choose the entry in the column with RR on top
and the row with FL on the left. The product is the permutation in that column and row: BR.

This group contains 24 elements, and is isomorphic to the symmetric group on 4 objects (the
group of all permutations of four objects. To see why this is, notice that a cube has four diagonals
and that with an appropriate twisting in space, those four diagonals can be mapped in themselves
in all possible ways. Since the entire group is effectively the symmetric group on four objects,
you can find the alternating group on four objects as a subset. Can you figure out which elements
are members of the alternating group?
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Table 4: Whole Cube Move Definitions

1 F R U B L D FF RR UU FR RB BL LF LB FL RF BR FRU RUF LBD BUR LFU BLU
1 1 F R U B L D FF RR UU FR RB BL LF LB FL RF BR FRU RUF LBD BUR LFU BLU
F F FF RF FR 1 LF FL B LFU LBD RUF R U FRU L BUR BLU D LB BL RR BR UU RB
R R FR RR RB BR 1 RF FRU L BLU LBD BUR B U D F RUF LFU UU LB FL LF BL FF
U U LF FR UU RB BL 1 BUR RUF D FRU LBD BLU LFU B L F R BR FF LB RR RF FL
B B 1 RB BL FF LB BR F LBD LFU U BLU RUF L FRU D R BUR LF FR UU FL RR RF
L L FL 1 LF BL RR LB BLU R FRU F U LFU BUR RUF LBD D B FF RF FR RB BR UU
D D RF BR 1 LB FL UU RUF BUR U R B L F LBD BLU LFU FRU FR RR RB FF LF BL
FF FF B BLU RUF F FRU BUR 1 UU RR BL RF FR LB LF BR RB FL L U LFU D LBD R
RR RR LBD L BUR LFU R RUF UU 1 FF FL LF BR RB RF FR LB BL BLU D F U B FRU
UU UU LFU FRU D LBD BLU U RR FF 1 BR LB FL RF RB BL LF FR R BUR B RUF F L
FR FR FRU RUF LBD R U F BR BL FL LB RR RB UU 1 LF FF RF D B L LFU BLU BUR
RB RB U LBD BLU BUR B R LF LB RF UU FL FF BL BR 1 FR RR LFU FRU D L RUF F
BL BL L U LFU BLU RUF B FL FR BR LF UU RF RR FF LB 1 RB BUR F FRU LBD R D
LF LF BUR F FRU U LFU L RB RF LB FF FR UU BR BL RR FL 1 B BLU RUF R D LBD
LB LB D B L RUF LBD FRU RF RB LF 1 BL RR FL FR UU BR FF F R U BLU BUR LFU
FL FL BLU D F L BUR LBD BL BR FR RF 1 LF FF RR RB UU LB RUF LFU R B FRU U
RF RF RUF LFU R D F BLU LB LF RB RR BR 1 FR FL FF BL UU LBD L BUR FRU U B
BR BR R BUR B FRU D LFU FR FL BL RB FF LB 1 UU RF RR LF U LBD BLU F L RUF

FRU FRU BR FF LB FR UU LF R BLU L B RUF LBD D U LFU BUR F 1 RB BL RF FL RR
RUF RUF LB BL RR RF FR FF D U BUR L LFU R LBD F FRU B BLU FL 1 LF UU RB BR
LBD LBD UU LB FL RR RB FR LFU B F D L BUR BLU R U FRU RUF RF BR 1 BL FF LF
BUR BUR RB FL FF LF BR RR U D RUF BLU F FRU B LFU R LBD L BL UU RF 1 LB FR
LFU LFU RR LF BR UU RF BL LBD F B BUR FRU D R BLU RUF L U RB FL FF FR 1 LB
BLU BLU BL UU RF FL FF RB L FRU R LFU D F RUF BUR B U LBD RR LF BR LB FR 1

Table 5: Whole Cube Multiplication Table
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A Unjumbling the Cube

The most obvious way to unjumble a cube is to pop it apart with a screwdriver and then re-
assemble it in the “solved” state. If you have the Rubik program, however, there is an easier
way.

A.1 The Screwdriver Method

First, the screwdriver approach: Turn one face of your cube by 45 degrees. Next, insert the tip of
the screwdriver under one of the edge cubies on that face that you just turned and pry it up. The
edge cubie will pop out. Every other cubie can now be easily removed by hand, but pay attention
to the first few you remove so you’ll remember how to fit them back together.

To restore the cube, notice that every cubie is different, and that there are two types—corner
cubies with three colored facelets and edge cubies with two colored facelets. Notice that if you
know those three or two colors, there is only one place in the final cube where the cubie can go,
relative to the six face cubies that are all connected in the central “skeleton”.

After the cube is disassembled completely, put it together, cube by cube, where each cube is
placed in its correct position relative to the central skeleton. Save an edge cubie (one with two
colors) for last, and to insert it, turn the face with the missing cubie 45 degrees relative to the
rest of the cube, hook one corner of the cubie connector into the almost-reconstructed cube, and
push it in until it snaps into place.

A.2 The Rubik Method

The Rubik program has a built-in solver that can unjumble any cube. What you will do is to
enter the cubie configuration of your currently-jumbled cube and then ask Rubik to solve it. The
solution is simply a list of sides to twist that will bring the jumbled cube to solved.

Before going to the trouble of entering your own cube, first see how the solving feature
works. Fire up Rubik and then click on the Jumble Cube button that you will find in approxi-
mately the center of the control area to the right of the drawing of the cube. This will jumble the
cube as if you had randomly turned hundreds of faces in random directions.

Next, click on the Solve Cube button that lies just to the right of the Jumble Cube button.
This will take a while, depending on how fast your computer is. On very slow older machines
it may take up to a couple of minutes. In fact the first time you solve a cube after starting up
Rubik, it takes even longer because there is some initialization required of the solver that only
has to be done once. On a relatively quick machine (as of 2003), it takes, on average, about 15
seconds to initialize and solve. But beware! Sometimes, for particular cubes it takes a lot longer.
An example that seems to take a long time for some reason is 6(FFRRUU).

When Rubik has a solution, a little window will pop up telling you that it’s done, and an
encoded solution will appear in the window labeled “Current Macro”. The solution consists of a
series of letters and each letter corresponds to one quarter-twist of a face. The letters “U”, “L”,
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“F”, “R”, “B” and “D” (and the lower-case versions of those same letters) stand for “up”, “left”,
“front”, “right”, “back” and “down”, respectively.

If the letter is in upper-case, it means that you should grasp that face with your right hand
and turn it a quarter-turn in the direction pointed to by your right thumb. If the letter is in lower-
case, turn it a quarter-turn in the other direction. Do not lose the orientation of your cube—keep
whatever face was initially up pointing up and whatever face was in front should remain facing
front.

Click on the OK button in the little window to make it go away. Now, you can single step
through the solution by clicking repeatedly on the right-arrow key.

When you have entered your own cube’s configuration and get a solution, the best way to
solve your cube if you’re not totally familiar with the move descriptions is to click on the arrow
key once, then find a face on your cube that you can twist to make it look exactly like the cube
on the screen. Then press the arrow-key again, do one more step, and so on. Rubik’s solutions
are typically less than 30 twists long, so it will not take long once you have entered your cube’s
colors into the program. (The little cube visible in the upper-right of the drawing area shows
what the back of your cube should look like, which can be quite helpful.)

If you are making these moves on your physical cube and you suddenly notice that you’re
mixed up, it is probably easiest just to re-enter your cube (you won’t need to change much) and
to click on the Solve Cube button again. The new solution will probably be much shorter since
you will presumably have made some progress toward the solution before you committed your
error.

Note: If your cube’s colors are different from those in Rubik you can change Rubik’s
colors to match. See the documentation that comes with the program.

So all you need to know how to do is to load your cube’s color pattern into Rubik. To do
so, click on the Input Cube entry in the Edit pull-down menu. A new window will appear that
displays and unwrapped version of the cube. One of the cubies is highlighted. To set its color,
simply click on the appropriate color from the palette of colors at the bottom of the window.
After each color is entered, the highlighted cubie advances. If you make a mistake, simply click
on the cubie that’s in error and click on its color, and so on.

When you have your colors correct, click on the Finish button and the results will be dis-
played in the window. If you made a mistake, use the Input Cube button again, and fix the few
bad cubie colors. Rubik can check for some errors in your input, but not all. If it does report an
error, you have certainly done something wrong, so you’ll need to use the Input Cube command
again.

If you’ve never done this before, you may have to repeat it a couple of times before you
succeed in solving your cube.

B Cube-Solving Macros

Warning: If you enjoy working out puzzles for yourself, don’t read this section! It contains a
detailed list of macros that are useful for solving the cube. It’s much more fun if you work out
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your own set and only then take a look at the collection found here.

The macros in the list below do interesting things to the cube. There is a short description
of the effects of each one, but to see exactly what each does, run Rubik and apply each one to
a solved cube. For example, the first macro below “cycles three corners”. Which three corners?
Test the macro in Rubik to see. Notice that there are duplications with respect to what the
macro does. This is because in most cases one of the versions, although longer, is much easier
to memorize. Macros that are commutators, for example, tend to be easier (at least for me) to
memorize.

You’ll see that the list below includes the set of macros that are built-in to Rubik. This first
set is very rigid in that the macros here do very specific minimal changes to the cube. These
are the sorts of macros that you would use when you are very near a solution. The number in
parentheses after each macro is the number of quarter-turns required to perform it. All of the
macros below were performed on a cube with yellow on the bottom, orange on the back, and
blue on the right.

C1 C2 C3 C4

C5 C6 C7 C8

• fUBuFUbu (8Q): A commutator that cycles three corners and leaves the rest of the cubies
intact. If P = UBu, this macro is fPFP−1. Figure C1.

• LdlfdFUfDFLDlu (14q): Rotates two corner cubies in place and does not move any of
the other cubies. This is also a commutator. If P = LdlfdF, then the macro is PUP−1u.
Figure C2.

• FRBLUlUbrfluLu (14Q): Flips two adjacent edge cubies. It is not quite a commutator:
Let P = FRB and let Q = UlU. Then this macro is PLQP−1lQ−1. It’s actually sort of
like a triple commutator since the inverse of L is l. Figure C3.

• RlFFLrdRlFLruRlfLrDRlffLrU: A pure commutator to flip two adjacent edge cubies. If
P = RlFFLrdRlFLr, the macro is PuP−1U. Figure C3.
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• LfUlFbUrFuRfBu (14Q): Flips two opposite edge cubies. This one is just short, and has
little else to recommend it. Figure C4.

• *LU*LU*LUU*RU*RU*RUU (20Q): Flips two opposite edge cubies in place. This is easy
to remember and seems faster than the 20 quarter-turns that it requires since six of the
moves are slice moves. This is a commutator: if P =*LU*LU*L, then the macro is:
PUUP−1UU. (Remember that UU is its own inverse.) Figure C4.

• UFFurdlFFLDR (12Q): Cycles three edge cubies, but is not a commutator. Figure C5.

• RlUUrLFF (8Q): Cycles three slice edge cubies. Very fast and can be thought of as being
a commutator when viewed as being composed of two slice moves: *LFF*RFF, since *L
and *R are inverses. Figure C6. (The third cubie in the cycle is the UB cubie.)

• fUBuFUbu (8Q): Cycles three corner cubies. It’s also a commutator: if we let P = Ubu,
the macro is fPFP−1. Figure C7.

• rURurUFRbRBRfRR (15Q): Swaps two corners and two edges, and does some flipping
and rotating of those cubies as well. It leaves the rest of the cubies unchanged. Figure C8.

The rest of the macros in this section are used to solve the cube early in the solution process.
They are generally quite fast, but they trash varying amounts of the rest of the cube. The ones
you choose to use depend on your overall cube-solving strategy. For example, if you start by
getting all the cubies on one face correct, you will usually do that either by getting all the corners
followed by all the edges or vice-versa. If you do corners first, then the moves to place the edges
must preserve the corners; if you place the edges first, you don’t care what the edge-setting
moves do to the corners and so on.

It’s easiest to see what each one does by applying them to a solved cube with rubik.

If you decide to solve the top face by doing the edges first, then the corners, here are some
macros to do the top face. All of the macros below were performed on a cube with yellow on the
bottom, orange on the back, and blue on the right.

C9 C10 C11 C12

• DRfr (4Q): Moves an edge cubie from the bottom front face to the top front face and flips
it relative to what FF would do. This move is for getting the top face correct. It leaves all
the other cubies on the top where they were, but it does twist one of the corner cubies in
place. Notice that if the edge cubie is in the correct position on the top face but is flipped,
you can do an FF followed by this macro to flip it. Figure C9.
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C13 C14 C15 C16

• FDfdFDf (7Q): Rotates the UFL corner cubie clockwise in place. This leaves all the other
cubies on the top face exactly as they were. Figure C10.

• rdRDrdR (7Q): Same as above, but rotates the corner cube counter-clockwise. Figure
C11.

• FDf, rdR (3Q): Brings a corner cubie from the bottom to the top face directly above it and
rotates it counter-clockwise or clockwise on the way up. No other cubies on the top face
are altered. Figure C12 (for FDf).

• rDDRDrdR (8Q): Brings a corner cubie up from the bottom to the top face directly above
it, and gives it a 180◦ flip on the way up. This macro has no effect on any of the other
cubies in the top face. Figure C13.

• fdFDLDl, FDfdrdR (7Q): Moves an edge cubie from the lower face to the middle face
without altering the top face at all. Figure C14 (for fdFDLDl) and C15 (for FDfdrdR).

• BULulb (6Q): Cycles three edge cubies on the top face. This mixes up the top-face corner
cubies but has no effect on the lower two levels. Figure C16.
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C Make Cover Cube

X1 X2 X3 X4

X5 X6 X7 X8

X9 X10 X11 X12

X13 X14 X15 X16

X17 X18

Here is a complete execution of the 17-move sequence BulbrfBUrLbubLURR that makes
the picture on the cover of this article. Each step is exactly one quarter-turn.
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