
Geometer
Reference
Manual

Tom Davis
May 17, 2006



2



Contents

1 Introduction 1
1.1 Finding Geometer Files . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Help Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 What is Geometer? . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 What is a Geometer Diagram? . . . . . . . . . . . . . . . . . . . . . 5

1.5 Geometer Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 �Geometer as a Research Tool . . . . . . . . . . . . . . . . . . . . . 7

2 Tutorial 11
2.1 Let’s Get Going . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Viewing Prepared Files . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 A Geometer Proof: The Nine-Point Circle . . . . . . . . . . 14

2.3 Making A Simple Drawing . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 A New Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Modifying Your Simple Drawing . . . . . . . . . . . . . . . . . . . . 21

2.6 �Using The Text Editor . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 An Easy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 An Easier Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 A More Difficult Example . . . . . . . . . . . . . . . . . . . . . . . 26

2.9.1 Tangent Circles Problem . . . . . . . . . . . . . . . . . . . . 26

2.9.2 The Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Geometer Usage Strategies 31
3.1 Using Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Basic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Using Computers Effectively . . . . . . . . . . . . . . . . . . . . . . 36

i



ii CONTENTS

4 Basic Reference 39
4.1 Geometer’s Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Entering Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Point Creation Commands . . . . . . . . . . . . . . . . . . . 40

4.2.2 �Conic Creation . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 New Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.4 Making New Lines . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.5 New Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.6 New Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.7 New Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.8 �New Bézier Curve . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Changing Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Point Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Line Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.4 Polygon Types . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.5 Angle Types . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.6 Line Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Miscellaneous Elementary Commands . . . . . . . . . . . . . . . . . 48

4.5 Proof Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Finding Proofs: Testing Diagrams . . . . . . . . . . . . . . . . . . . 50

4.7 Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.8 Odds And Ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.9 The File Chooser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 �Advanced Features 57
5.1 Geometry Via Text Editor . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.2 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Line Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Layer Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.1 General Information . . . . . . . . . . . . . . . . . . . . . . 65

5.5.2 Special Characters . . . . . . . . . . . . . . . . . . . . . . . 66



CONTENTS iii

5.6 Numbers And Calculation . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.8 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.9 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.9.1 Recording Animations . . . . . . . . . . . . . . . . . . . . . 77

5.10 More On Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.11 The Display Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.12 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.12.1 Primitive Types . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.12.2 Command List . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.12.3 The Text Editor . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.12.4 Secret Commands . . . . . . . . . . . . . . . . . . . . . . . 86

5.12.5 Startup Options . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Teacher’s Tutorial 89

6.1 A Simple Construction: The Circumcircle . . . . . . . . . . . . . . . 89

6.2 A Simple Proof: Equal Sides =⇒ Equal Angles . . . . . . . . . . . . 96

6.3 A Trapezoid has Perpendicular Diagonals . . . . . . . . . . . . . . . 100

6.4 Intersection of Three Circles . . . . . . . . . . . . . . . . . . . . . . 103

6.5 A Binary Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.6 An Improved Binary Counter . . . . . . . . . . . . . . . . . . . . . . 106

6.7 �Plotting Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.8 �Plotting Parametric Curves . . . . . . . . . . . . . . . . . . . . . . 109

6.9 Ellipse Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.10 ��Angle Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.11 Morley’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.12 Drawing the Steiner Porism . . . . . . . . . . . . . . . . . . . . . . . 117

6.13 Apollonius’ Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.14 ��Apollonius’ Point . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.15 Making Animated GIFs from a Script . . . . . . . . . . . . . . . . . 127



iv CONTENTS

7 Sleazy Hacks 131
7.1 Drawing Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.1 Invisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.2 Finding Things in the Editor . . . . . . . . . . . . . . . . . . 132

7.2 Geometer Draws the Wrong Thing . . . . . . . . . . . . . . . . . . . 132

7.2.1 The Wrong Segment . . . . . . . . . . . . . . . . . . . . . . 133

7.2.2 The Wrong Tangent . . . . . . . . . . . . . . . . . . . . . . 133

7.3 Geometer Deficiencies and Apparent Deficiencies . . . . . . . . . . . 137

7.3.1 Using Angles . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4 Making Proofs or Constructions . . . . . . . . . . . . . . . . . . . . 138

7.5 Making Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.6 Making Drawings for Publication . . . . . . . . . . . . . . . . . . . 139

8 Coordinate Systems 141
8.1 Barycentric Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2 Trilinear Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2.1 Malfatti’s Problem . . . . . . . . . . . . . . . . . . . . . . . 145

9 Quickstart Guide 149



Chapter 1

Introduction

See Appendix 9 for the Quickstart Guide.

If you just want start playing with the program, go ahead—that’s a perfectly reasonable
approach. If you decide to do so, your best approach is to begin by working through
the first couple of examples in the tutorial (Chapter 2). The files used in the tutorial are
in the Demos subdirectory of the installation directory. See Section 1.1 for details.

You can always come back here later.

1.1 Finding Geometer Files

All the sample files can be found in the installation directory of Geometer. During
installation on a Windows machine, Geometer suggests that it be installed in the di-
rectory:

C:/Program Files/Geometer

but the person who installed it could have put it anywhere. On a Macintosh it could
also be anywhere.

Double-click on the Geometer icon and once Geometer is running, and if you issue
the Open File command from Geometer, the file chooser will start in that installation
directory. (If you double-click on a Geometer diagram, the file chooser will start in the
directory of the file that you double-clicked.) For details on the use of the file chooser
see Section 4.9.

Here are the usual subdirectories of the Geometer installation directory:

• All the files used in the online tutorial (which is very similar to the tutorial chap-
ter in this manual—see Chapter 2) are in the subdirectory called Demos.

• The files used in this reference manual are in the subdirectory called Reference.
That directory has various subdirectories corresponding to the chapters in this
manual.

1



2 CHAPTER 1. INTRODUCTION

• If you purchased the Book called Geometry with Computers, the files used there
are in the GeomBook subdirectory. If you did not purchase the book, those files
will not be present.

• The HTML subdirectory does not contain Geometer diagram files; it contains the
help files that are viewed from the Geometer Help menu. See below. On a
Windows or LINUX system, set your environment variable GEOMDOC to refer to
this directory. GEOMDOC should probably be something like this: C:
Program Files

Geometer

HTML.

• There may be other directories with additional files in them.

Example: If you are going through the tutorial (either here or online) and it tells you
to open the file called Circ.T, start the file chooser using the Open command under the
File pulldown menu. Double click on the directory entry Demos, and then double click
on the file name called Circ.T.
Example: If you are reading this reference manual and you would like to experiment
with the file referred to as Ref1/Orthocenter.T, start the file chooser with the Open
command in the File pulldown menu, double click on the Reference directory (that’s
where all the reference manual files are found), then double-click on the Ref1 subdi-
rectory, and finally on the file called Orthocenter.T.
If you own the book, Geometry with Computers, its files are organized exactly like
those in the reference manual except that you will first click on the GeomBook directory
instead of the Reference directory.

1.1.1 Help Files

The Geometer help files in HTML format are found in the HTML subdirectory of the
installation directory. If you would prefer to use your normal web browser on those
files instead of the simple-minded Geometer built-in browser, double-click on the file
called index.html in the HTML subdirectory outside of the Geometer program.

1.2 Notational Conventions

The notation used in this manual is fairly standard, but there are a few notational con-
ventions:

• Command names are displayed as follows: Open or PP=>L.

• File names, or the contents of Geometer’s text files are written like this.

• Keyboard commands are written like this: Ctrl-C (which means to hold down
the Ctrl key while pressing the C key).

• Sections that are difficult or very difficult are preceded by the symbols: � or ��.



1.3. WHAT IS GEOMETER? 3

1.3 What is Geometer?

Geometer is a tool to visualize Euclidean geometry dynamically. It is for students or
teachers who wish to gain a more intuitive understanding of geometry. It can be used
for many things:

1. It can test thousands of configurations of geometric conjectures, at least to the
accuracy of the screen resolution of your computer.

2. Students can step through pre-packaged proofs, constructions, or derivations of
geometric facts.

3. Teachers can to construct those pre-packaged proofs and demonstrations.

4. It can be used as an exploratory tool to search for geometric relationships.

5. It can be used to generate high quality drawings for use on class handouts, or for
publication.

6. It can be used to write and run demonstration scripts that run like canned video
demonstrations.

More specifically, Geometer is a program for drawing, editing, and displaying figures,
(or “diagrams”, as they will be called here), of plane Euclidean geometry. It is a con-
straint solving system in the sense that the user specifies constraints, and Geometer
calculates the diagram from those constraints.

At first glance, it seems like a simple drawing program with a geometric flavor. Imagine
the following sequence of commands:

1. The user begins with a blank window, and begins by issuing a command to draw
some points. Three mouse clicks on different places in the window result in three
points labeled A, B, and C.

2. Next, the user issues the Geometer command to draw the circle centered at one
point and passing through another. After identifyingA as the center andB as the
other, a circle will be added to the drawing centered at A, and passing through
B.

3. Finally, the user issues commands to draw the lines throughC that are tangent to
(“tangent to” = “touching”) the circle. Depending on exactly whereA, B, and C
are located, the result will be a drawing something like one of those that appear
in Figure 1.1. (Notice that for the configuration in the lower left of the figure,
tangent lines through the point C do not exist, so Geometer doesn’t draw them.)

On the screen, the “obvious” diagram appears, but internally, only the locations of
the points are stored, together with the constraints that the circle and two lines must
satisfy. What makes Geometer dynamic is that at any point in the display or editing
of the diagram, the user may move one or more of the unconstrained points (A, B, and



4 CHAPTER 1. INTRODUCTION

AA

BB

CC

AA

BB

CC

AA BB

CC

AA

BB

CC

Figure 1.1: Geometer As Constraint Solver
Ref1/Circtan.D [D]

C in this particular example) and the diagram will be altered so that the constraints
continue to be satisfied.

Figure 1.1 illustrates four possible configurations of the situation described in the pre-
vious example. After the initial commands to specify the figure, the user can simply
use the mouse to drag around the points A, B, and C and the drawing will change
dynamically in such a way that the circle remains centered at A, passing through B,
and so that the lines through C remain tangent to that circle. All four examples in the
figure can be obtained from any of the others by a suitable movement of the points A,
B, and C.

In fact, the user doesn’t even need to wait for all the constraints to be satisfied before
modifying the figure. Imagine that the original points were arranged as in the lower
left example, and after drawing the circle, the user realizes that the tangent lines won’t
make sense. So all that’s required is to drag C outside the circle, and then to issue the
commands to draw the tangent lines.



1.4. WHAT IS A GEOMETER DIAGRAM? 5

In the vast majority of cases, geometric diagrams can be manipulated in Geometer
using a graphical user interface (GUI). The mouse is used to select and drag points, and
as they are moved, the constraints are continuously re-solved, and with each solution,
an updated diagram is displayed.

1.4 What is a Geometer Diagram?

A typical Geometer diagram illustrates a geometric concept or theorem as a drawing
on a computer screen. Geometer diagrams are far better than figures in a textbook,
however, because they can be modified by the user, and as the modification occurs,
Geometer continuously re-solves the constraint equations and redisplays the diagram.
It’s as if you were reading a textbook that contains thousands of figures, or at least
thousands of variations on each figure.

Geometer can step through a proof or demonstration, emphasizing the important parts
of each step, but still allowing you to manipulate the figure at any stage, and to go back
to previous steps if you get confused or need to check on something.

In addition to being dynamic, the diagrams have features that can be emphasized by
means of different colors, labels, marks, and blinking. Text can be associated with each
stage of a demonstration.

Geometer also has a script mode where a diagram can be driven automatically through
a programmed animated script.

The best thing about Geometer, however, is not the collection of packaged examples
and illustrations, but the fact that you, as a student or teacher of geometry, can build
and manipulate your own diagrams, making geometric discovery much easier and more
fun.

The word “geometry”, of course, is used here in a very loose sense. Geometer can
work with trigonometry, projective geometry, and can even be used to generate com-
puter art. If you’re willing to go to the effort, it can be used like a miniature graphical
programming language with a user interface that’s primarily graphical.

1.5 Geometer Features

In addition to the points, lines and circles in the example, Geometer supports other
types of geometric primitives. The complete list includes points, lines, circles, conic
sections, angles, arcs, polygons and Bézier curves. There are dozens and dozens of
constraints among the geometric primitives that can be specified. Finally, Geometer
supports a few non-geometric primitives, including, but not limited to: floating point
numbers, text, and projective transformations.

Also included is machinery to define “macros”—complex operations that are con-
structed from simpler ones which can be repeated many times. It supports machinery
to run scripts to put Geometer into “auto-pilot” mode, and still other machinery that



6 CHAPTER 1. INTRODUCTION

allows users to step through a complex proof or construction and to have various fea-
tures appear and disappear as necessary. At every stage, the user can manually alter the
geometry (and the constraints will be continuously re-solved) to see what happens.

Finally, and this is perhaps one of its most powerful features, Geometer can present
both a textual and a geometric representation of any diagram. In other words, you can
edit geometric diagrams using either visually or textually.
To illustrate, here is Geometer’s textual description of the example above with the
circle and the tangent lines:

.geometry "version 0.2";

v1 = .free(0.2275, 0.515, "A");

v2 = .free(0.52, 0.76, "B");

v3 = .free(0.685, 0.5625, "C");

c1 = .c.vv(v1, v2);

l1 = .l.vc(v3, c1, 1);

l2 = .l.vc(v3, c1, 2);

Don’t worry about the exact details, but here’s how to read that textual description.

The first three lines create the three free points (the “.free” means they can be freely
moved with a mouse)∗. Internally, they are named v1, v2 and v3; on the screen, they
are called A, B, and C. The two numbers in each line are the current coordinates of
the point. The next line defines a circle, internally called c1, which satisfies the .c.vv

constraint. That constraint is that the circle created must use the first point as its center
and must pass through the second. In this example, the first point is v1 (labeledA) and
the second point is v2 (labeledB)—exactly what we see in the diagram. The final lines
of text define the tangent lines with similar constraints.
So far there’s nothing too special, but (again without worrying too much about the de-
tails, take a look at the following Geometer code that draws the actual figure displayed
in the text (Figure 1.1). Remember that the actual figure has four copies of the figure
above, where each contains points, circles and lines, but in all cases the constraints
satisfied are the same. By using a macro, all the constraints are specified once, and
then those are applied to four different sets of points to draw the four examples you see
in the figure. The macro consists of the six lines beginning with .macro and the three
lines between the curly braces are the macro body.

.geometry "version 0.2";

.macro circtans(.vertex v1, .vertex v2, .vertex v3)

{

c1 = .c.vv(v1, v2);

l1 = .l.vc(v3, c1, 1);

l2 = .l.vc(v3, c1, 2);

}

v1 = .free(0.2275, 0.515, "A");

v2 = .free(0.52, 0.76, "B");

v3 = .free(0.685, 0.5625, "C");

w1 = .free(-0.445, -0.4075, "A");

w2 = .free(-0.2375, -0.1275, "B");

w3 = .free(-0.4225, -0.325, "C");

∗In the internal format points were originally called “vertices”, and that is why you see all of the vs. Not
only do the points have names like v1, v2 and so on, but the commands like .c.vv stand for “create a circle
from two vertices”. If the program were rewritten today, the command would be .c.pp.



1.6. �GEOMETER AS A RESEARCH TOOL 7

x1 = .free(0.56, -0.6025, "A");

x2 = .free(0.6175, -0.57, "B");

x3 = .free(0.1375, -0.17, "C");

y1 = .free(-0.5825, 0.5775, "A");

y2 = .free(-0.425, 0.435, "B");

y3 = .free(-0.285, 0.27, "C");

circtans(v1, v2, v3);

circtans(w1, w2, w3);

circtans(x1, x2, x3);

circtans(y1, y2, y3);

Since there’s both a textual and a graphical version of every diagram and you can edit
it using the graphical user interface or a text editor, you have the best of all possible
worlds and you can edit your diagram using the most appropriate method.

(Because of the existence of a textual version of each diagram, if you are computer-
literate, it is quite easy to write computer programs that generate Geometer diagrams.
This can be quite a powerful feature for complex diagrams. Some of the more compli-
cated diagrams on this CD were generated that way.)

1.6 �Geometer as a Research Tool

If you don’t know high school geometry, it’s probably best to skip this section.

As a final example in this introduction, here is how Geometer might be used to help
solve a real problem. (The problem here would not be considered “research” by a
professional mathematician, but if you don’t know how to solve it, it’s research for
you.)

Here’s the problem: Given the lengths of the three medians of a triangle, find (in other
words, construct) the triangle itself. Let’s see how Geometer might help. Recall that
a median of a triangle is the line segment connecting a vertex with the midpoint of the
opposite side.

AA

BB

CC

A’A’

B’B’

C’C’
MM

Figure 1.2: Triangle with its medians
Ref1/Meds.T [M]

First, look at Figure 1.2. We are given the three lengths AA′, BB′, and CC ′ and we
wish to find the triangle. We know that the point M where the three medians meet is
2/3 of the way from each vertex to the opposite side—in other words, AM = 2A′M ,



8 CHAPTER 1. INTRODUCTION

BM = 2B′M , and CM = 2C ′M . So if we start with, say, AA′, we can find a point
M on it that is 1/3 of the way between A′ and A (this is a standard construction).

A’A’ MM AA

C’C’

CC

B’B’

BB

Figure 1.3: Possible median locations
Ref1/Meds1.D [D]

Now look at Figure 1.3. If you know the location of segment AA′, you can find where
M is, and since you know that all the medians meet at M , and that they are all 2/3 of
the distance between the vertex of the triangle and the opposite edge, the points B, B ′,
C, and C ′ must all lie somewhere on the circles shown in the figure.

So if we leave AA′ fixed and if we could moveB around its circle to all of its possible
positions, we know that the median property will be satisfied if the midpoint between
B and A is at C ′. (If this isn’t clear, look back at Figure 1.2 and read it again.)

A’A’MMAA

C’C’

CC

B’B’

BB

B’’B’’

Figure 1.4: Possible midpoint locations
Ref1/Meds2.T [M]

So as B moves around its circle to all of its possible positions, what path does the
midpoint between B and A follow? If you’re not sure, the best bet is to make that
midpoint, draw it in a smearing color, and then move B ′′ once around its circle (leave



1.6. �GEOMETER AS A RESEARCH TOOL 9

B fixed so the circle size doesn’t change, and then move B ′′ around to try all the
positions on that circle) to see what you get. What you get is Figure 1.4.

The path of the midpoint of AB appeared to be a circle! Suspecting that this path
is, in fact, a circle (and knowing some geometry), it is easy to show that the path of
the midpoints is a circle, and to work out the center and radius of that circle. If you
construct that circle and the circle of possible locations for C ′, the point C ′ has to be at
the intersection of those two circles (See Figure 1.4). Once you know where C ′ goes,
it’s easy to find C (oppositeM from C ′, and twice as far away), and then B will be on
the line CA′, and as far from A′ as C is.

You could probably have figured this out without Geometer, but it is certainly a lot
easier to play with the drawing for a few seconds and notice the critical property for
the construction.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Tutorial

Geometry is the science of correct reasoning on incorrect figures.
George Pólya

2.1 Let’s Get Going

Geometer is easy to use, and since a picture is worth a thousand words, let’s just start
with a picture. Install Geometer on your computer, double-click the Geometer icon
and you’ll be ready to go.

If you own the book, Geometry Using Computers, it contains many more examples that
are completely explained and it thus will serve as a more advanced tutorial. There is
also a teacher’s tutorial later in this document. See Chapter 6.

If you have problems starting the program (the window is too big for your screen, the
colors are strange, the font is too small to read, et cetera) there are preferences that can
be changed. See Section 5.12.5.

The first example will illustrate a standard theorem from high school geometry—the
fact that the three medians of any triangle all meet at a point, or as a geometer would
say, the three medians are “concurrent”.

(In what follows, we assume that you know how to use a mouse and keyboard, how
to use pulldown menus, how to start programs, how to use a simple cut-and-paste text
editor, et cetera. If not, get your kid to help you.)

Run the Geometer program by double-clicking the icon. The window that appears has
three sections: a large black work area, a pulldown menu across the top, and a com-
mand area on the right side of the screen that’s filled with buttons and other controls.
See Figure 2.1.

If you have just installed Geometer, there will also be a ”Tip of the day” that you can
dismiss for now by clicking on its ”Close” button. This tip will appear every time you

11



12 CHAPTER 2. TUTORIAL

Figure 2.1: Geometer Window

start Geometer until you turn it off by clicking in the little box at the bottom. It can be
turned back on with the Edit Preferences command in the Edit pulldown menu.

Under the File entry in the pulldown menu, select Open. A file selection dialog box
will appear, and use that to double click on the directory Demos and then double click
on Medians.T to open that file.

You should see a large triangle ABC as shown in Figure 2.2. Use the mouse to move
the cursor over one of the points labeled A, B, or C, press the left mouse button,
and hold it down as you move the mouse around. The point will be dragged by the
mouse, and the whole figure will change in response. Note that the three lines inside
the triangle continue to cross at the same point.

So what’s going on?

This example illustrates an important theorem in Euclidean geometry—that the three
medians of a triangle meet at a point. A median is a line that connects a vertex of a
triangle to the midpoint of the opposite side. The medians in this example are the line
segments connecting A to Am, B to Bm, and C to Cm. (Am is halfway between B
and C, Bm is halfway between A and C, and so on.)

Now try dragging a vertex again and watch what happens a bit more closely—as you



2.1. LET’S GET GOING 13

AA

BB

CC

CmCm AmAm

BmBm

Figure 2.2: Medians
Ref1/Medians.T [P]

move the vertexA, B, or C, the pointsAm, Bm, and Cm move in such a way that they
remain exactly in the middle of each side.

As you drag the vertices of the triangle around, you are effectively testing the theorem
for thousands of possible triangles, and although this is not a proof of the theorem, at
least it provides a lot of evidence that the theorem may be true∗. What we see is clearly
not a proof for many reasons:

1. The drawing is only accurate to the resolution of your computer screen which is
far less accurate than 1/100 centimeter—even on the best monitors available to-
day. Maybe the lines just come close to meeting at a point—to within a billionth
of a millimeter, for example.

2. You only tried a few thousand examples. Maybe you missed the one bad one.

3. The window on your computer screen is unlikely to be more than about 2000
pixels by 2000 pixels, and it’s probably much smaller. What if the theorem starts
to fail for triangles that are long and skinny—say 1, 000, 000 pixels long†?

But the thousands of Geometer diagrams are certainly better than what you get in a
typical textbook or what you can do with paper and pencil. If you only look at a single
illustration in a textbook, how do you know that the person who drew it wasn’t simply
lucky, and for the particular triangle drawn, the three medians do happen to coincide?
After all, if you only look at a diagram of an equilateral triangle, a “theorem” that states
that all medians of a triangle are also angle bisectors of that triangle appears to be true.

∗When the author was showing a very early version of Geometer to a friend, she asked if it were a
“theorem prover”. The answer, of course, is no. It’s a “theorem convincer”.
†This reminds me of an exchange that occurred 30 years ago in a logic class taught by Fred Thompson at

Caltech. A student was arguing with him about linguistics and (foolishly) said something about “a random
English sentence”. Professor Thompson said, “What do you mean by ‘a random sentence’?” The student
grabbed a history text and said, “The fifteenth sentence on page 241 of this book.” (or something like that).
Thompson replied, “How on earth can you call that a random sentence? That book doesn’t have even a single
sentence with more than a million words in it, and almost all sentences are longer than that.”



14 CHAPTER 2. TUTORIAL

Finally notice that the only points you can move are A, B, and C; you can’t move the
medians Am, Bm or Cm (although they do get highlighted when you click on them—
more on that later), or the point at the intersection of all three medians. Some points
are free, others are constrained, and as we’ll see later, some are partially constrained.

All the diagrams that appear in this release were created with Geometer and the vast
majority of them can be manipulated in exactly the same way you manipulated the
medians in the example above. Some of them allow even more manipulation options.

2.2 Viewing Prepared Files

Before trying to create your own Geometer diagrams, you may wish to view a few of
the prepackaged demonstrations. In fact, for many people, the best way to learn what
Geometer does will be to try lots and lots of the diagrams. When you see something
that you don’t understand, you can look at the text version, or if that doesn’t work, you
can break down and look at the reference manual. We’ll look at one canned demon-
stration, but you can get a better idea of Geometer’s capabilities by loading a bunch of
other diagrams and playing with them.

2.2.1 A Geometer Proof: The Nine-Point Circle

Let’s use Geometer to illustrate a proof of a very interesting (and surprising) theorem.
Using the Open command in the File pulldown menu, this time open the file called
Ninepoint.T (which should be in the Demos directory). If you restarted Geometer
after you viewed the medians example, you will have to do the same thing as before:
double-click on the Demos directory and then on the file Ninepoint.T. If you are
still in the same Geometer session, the file browser will remember that you are in the
Demos directory and all you will need to do is double-click on the new Geometer file
name.

The text on the screen tells you that for any triangle, the midpoints of the sides, the feet
of the altitudes, and the points half-way between the orthocenter and the vertices of the
triangle all lie on a single circle. (The orthocenter is the point where the three altitudes
of the triangle meet.)

It would be tough to visualize this without some sort of drawing, and every geometry
book in which the theorem appears will have a drawing showing you what’s going on.

Similarly, Geometer’s diagram (Figure 2.3) illustrates one example. The altitudes are
the perpendiculars to the sides that pass through the vertices opposite. In the Geometer
diagram, they are drawn in red. The points E, F , and G at the feet of the altitudes are
labeled in red as well. The midpoints of the sides are labeled in yellow, and the points
midway between the intersection of the altitudes at H and the vertices are labeled in
green. All nine points lie on the magenta circle.

Mouse down on the pointsA,B, orC, and move them around. The triangle can change
shape, perhaps drastically, and the magenta circle will change size and position as well,



2.2. VIEWING PREPARED FILES 15

The Nine Point Circle:The Nine Point Circle:
In ∆ABC, the feet of the altitudes (E,F,G),In ∆ABC, the feet of the altitudes (E,F,G),
the midpoints of the sides (A’, B’, and C’),the midpoints of the sides (A’, B’, and C’),
and the midpoints Q, R, and S between theand the midpoints Q, R, and S between the
orthocenter and A, B, and C all lie onorthocenter and A, B, and C all lie on
the same circle.  Move points A, B, and C.the same circle.  Move points A, B, and C.

AA

BB

CC

FF
EE

GG

HH

QQ

SS

RR

C’C’ A’A’

B’B’

Figure 2.3: The Nine Point Circle
Ref1/Ninepoint.T [P]

but by golly, those nine points will stay on that circle. They may change their ordering
on the circle, and the altitudes may meet outside the triangle and their feet may lie
outside as well, but no matter how you move the triangle’s vertices, those nine points
remain locked on a circle.

This is a nice demonstration, and the more playing you do with the diagram, the more
convinced you will become that the theorem is true. But you have not seen a proof. For
all you know, you didn’t manage to find some configuration of the points that cause the
points not to lie on a circle, and in reality, your eyes (and computer calculations) are
only so good. The true points may lie a millionth of a centimeter off the true circle.

Warning: if you’re a bit rusty at geometry (which is a likely reason that you’re using
Geometer), don’t worry if you can’t follow the following proof—it depends on know-
ing a few facts from elementary geometry. This theorem was chosen, however, because
it is pretty amazing, and the proof requires a few steps (but not too many). Even if you
aren’t rusty, you’ll still have to think—just not quite as hard as you’d have to if you
were staring at a single static figure in a high school geometry textbook.

To step through a proof of the theorem, move your mouse to the lower right part of the
command area on the right side of the window, and click on the button that says: Next.
This advances one step into the proof.



16 CHAPTER 2. TUTORIAL

At each stage in the proof, there’s usually a bit of text at the bottom of the Geome-
ter window to explain what’s going on, and the diagram changes somewhat. In the
first stage of the proof of the nine-point property, you will simply be convinced that a
particular pair of lines is parallel and that the lines are the same length. The lines in
question are emphasized with a blinking color, and the text gives the geometric reasons
why they must be the same length.

As you step through the proof (by pressing the Next key repeatedly), at any point
you can manipulate the figure. While you’re looking at this first step of the proof,
try moving the points A, B, and C, and notice that although they move around, the
blinking lines remain parallel, and that they remain the same length. (You’ll also notice
that not only do the lines stay parallel, but their endpoints seem to form a rectangle—a
fact that will be proven later on.) It is interesting to note that one blinking line is not
necessarily always above the other, as you can verify by moving the triangle’s vertices.
Thus if the proof had depended on the fact thatC ′A′ was aboveQR, it would obviously
be incorrect.

Once you’re convinced of the first step of the proof, press Next again to continue. Read
the statement that appears, and convince yourself that it is also true. Then simply repeat
this process all the way to the end. You can back up to a previous step in the proof using
the Prev button, or you can start over at the beginning of the proof with the Start button.

Feel free to poke around and look at the other files in the various subdirectories to get
an idea of the sorts of things that Geometer can do. Remember that all of them were
created with Geometer itself, so you can learn to do the same.

To get a good overview of the features, here is a recommended set of diagram files to
examine. Don’t worry if you don’t understand exactly what’s going on—just observe
the sorts of things that Geometer can do for you. The rest of this manual is to help you
understand why these things work.

• Demos/Heptadecagon.T. This is a construction of a regular 17-sided figure
(the heptadecagon) using only straight-edge and compass methods. As with the
ninepoint theorem above, after loading the file, press the Next button to step
through the construction.

• Demos/Spirograph.T. This example demonstrates both Geometer’s transfor-
mation commands and scripting commands. After loading the file, press the
Run Script button to see a sort of spirograph drawing appear. (The S key is a
shortcut for Run Script.)

If you get bored watching the script run, click with the mouse anywhere in the
drawing area. That will stop the script. If you wish to erase the junk that’s been
drawn so far, just click again in the drawing area.

• Demos/Fagnano.T. Here is an interesting proof that a certain triangle is the
solution to a minimization problem. Step through the proof as before with the
Next button, but then go back to the beginning of the proof (with the Start button),
modify the figure so that the initial triangle has an obtuse angle (an angle larger
than 90◦), and step through the proof again to see why the proof is invalid in



2.3. MAKING A SIMPLE DRAWING 17

this case. As you step through the proof, see which statements are false because
there is an obtuse angle.

• Demos/Circ.T. Finally, load this file and press the Run Script button to convince
yourself that the area of a circle is given by the formula A = πr2.

2.3 Making A Simple Drawing

OK, now that you know what Geometer can do, let’s try to create a theorem ourselves.
A nice exercise is to recreate the first example we saw in the introduction illustrating
the fact that the three medians of a triangle meet in a point.

Get rid of anything on your screen using the New command under the File pulldown
menu. Depending on what you did, you may have to agree to throw away your changes.
Agree to anything, and after you do, you’ve got a clear drawing area.

First, create the three vertices of the triangle. To do this, find the Free P button near the
upper left of the command area. Click on the little square to the left of the name, and
then move your cursor into the drawing area an click down where you want the first
point to appear. Do the same thing twice more (click on the Free P button, then click in
the drawing area to place a point), and you’ll have the three vertices of your triangle.
By default, Geometer labels free points that you make as A, B, C, . . . . If you don’t
like these names, they can be changed later. For now, just leave them the way they
are. The points are called “Free” in that they don’t depend on anything. You can freely
move them with your mouse.

Note: 99% of the time, the first thing you will do when you begin a new Geometer
diagram is to create some points. All the other primitives (lines, circles, et cetera) are
defined in terms of points, so if you don’t have a point or two, there is almost nothing
you can do.

Now if you don’t like the positions where you put them down, you can move them with
the mouse, exactly as you did in the previous canned examples. Move them around
until they form a triangle that you find satisfying.

Next you need to make the edges of the triangle. At the upper right of the command
menu is a button labeled PP=>L. It’s under the Line area, so it’ll create a new line, and
the name indicates how: two points will determine a line. Click on that button, and
then click on two different points to make the first edge of the triangle.

Do exactly the same thing to make the other two edges, but as you make them, notice
what’s going on in the little text window near the bottom of the command menu. When
you start, you’re in “Manipulation Mode” (meaning that you can manipulate the dia-
gram by clicking down on points and dragging them), but as soon as you click on the
PP=>L button, it changes to say “Pick Point 1”. After you’ve successfully clicked on
the first point, it’ll change again to “Pick Point 2”. When the line has been successfully
completed, the message changes back to “Manipulation Mode”. It’s obvious what’s
going on in this simple example, but in more complicated situations, it’s nice to be able
to look there and see exactly what Geometer expects. It can even be a help in simple



18 CHAPTER 2. TUTORIAL

situations. Suppose you want to make a point where a circle intersects a line, so you
issue the appropriate command, and click on the circle, but then Geometer won’t seem
to let you click on the line. If you look in the little box, suppose it still says “Pick
Circle”. This might happen because you got sloppy and didn’t click close enough to
the circle for Geometer to know which one you meant.
After you’ve got the three points and three edges connecting them (or at any point in
between), you can move the points around as long as you’re not in the middle of spec-
ifying a line. (In other words, when you’re in “Manipulation Mode” you can always
manipulate the points.
Now we need to construct the midpoints of the sides. This can be done with a stan-
dard straight-edge and compass construction, but it’s such a common operation that
Geometer provides a shortcut; in this case, the PP=>P Mid command. This makes a
new point that’s the midpoint between two other points.
Since you’re probably lazy (but probably not as lazy as the author), you’re already tired
of going to the command menu, clicking on a command, and then clicking to enter a
new geometric object. Geometer provides a short cut, called “Repeat Mode” where
you can repeatedly add the same type of object. Let’s try it to make all three midpoints.
Instead of simply clicking on the PP=>P Mid button, either double-click on it or hold
down the Ctrl key on your keyboard before clicking on the button. Note that the
little yellow light goes on in the “Cancel Repeat Mode” button at the bottom of the
command menu. In repeat mode, click on all three pairs of points, and each time to do
so, you’ll get another midpoint. After the third one, you don’t want to continue making
midpoints, so click on the “Cancel Repeat Mode” button to get yourself out of repeat
mode. The keyboard shortcut for “Cancel Repeat Mode” is Ctrl-g (in other words,
hold down the Ctrl key while you type g).
Note: You can also get out of repeat mode simply by clicking on another command
button. If you just click on a new button, you’ll be able to make one of those objects.
If you double-click the new button (or hold down the Ctrl key when you press the new
button), you’ll be in repeat mode for the new command.
Now finish the theorem illustration by putting in the medians—the lines connecting the
vertices of the original triangle with the midpoints of the opposite sides. For this you’ll
use the PP=>L command again, and the lazy ones among us will double-click (or use
the Ctrl button) to do it in repeat mode.
Get out of repeat mode if you’re in it, and you can illustrate the theorem by moving the
vertices of the newly created triangle and noting that the three medians always seem to
meet in a point.
Finally, let’s add some text to the diagram to indicate what it shows. Under the Prim-
itives pulldown menu, select the Text->Descriptive Text command. A little window
appears that supports a very simple editor. Type in a description, something like: Three
medians meet at the centroid, and then click on the Save button. Your text will ap-
pear in the lower left of the drawing area. You can edit this text if you wish by clicking
on it (it will be underlined when selected), and then use the Edit Text command in the
Edit pulldown menu. The text can have multiple lines, but can only be 1000 characters
long.



2.4. A NEW THEOREM 19

2.4 A New Theorem

OK, the medians theorem is pretty easy, and you’ve probably seen it before, so let’s
get a little more practice with Geometer and at the same time learn an interesting fact
about Euclidean geometry.

In the File pulldown menu, select New and your Geometer work area will be cleared
(again, after you agree to throw away your changes).

Geometer’s most important editing commands appear in the command area on the
right side of your screen. At the top of that area are most of the geometric creation
commands. Each command has a little square to its left, and clicking on that square
will allow you to create a geometric object. The commands are arranged by what they
produce—all the point creation commands are in one group, and all the line creation
commands in another.

Make two free points in the drawing area, and try to put the first of them roughly in the
center of the drawing area and the other toward the middle of the right edge. You’re
going to use the centered one as the center of a circle and the other as a point on its
edge.

Now click the square button next to Ctr PP=>C under the label Circle. This command
works like a physical compass in that you need to set the distance between the point
and the pencil and identify where the point goes before you draw a circle. You’re
going to make a circle by choosing a point for its center and then setting the radius
by identifying two points whose separation is the radius that you desire. Note that in
the status window near the bottom of the command area, the text reads “Pick Center
Point”—remember that you can always look in this status box to get some idea of what
Geometer wants you to do next. In this case, you need to click on the point that you
want to use as the center of the circle, so click on the point labeled “A” near the center
of your window.

Now you need to pick two points whose distance apart is the radius. These will be A
and B. The status window now reads “Pick Reference Point 1”, so click on the point
labeledA and then on point B and a circle will appear. Try moving the two free points
and note that the circle changes in such a way that its center is always pointA and point
B always lies on its edge.

The Ctr PP=>C command is the most useful one for making circles. Quite often,
however, the situation is what we had above—one point (A) is the center and the other
(B) is on the edge of the circle. To use the command, you need to pick A, then A, then
B. There is a shortcut: Ctr Edg=>C that allows you to pick the center and then a point
on the edge so that drawing this common type of circle is a bit faster, but be sure to
remember the most powerful method: Ctr PP=>C.

Now use the P on C (point on circle) command under the label Point and click anywhere
on the edge of your circle. A new point will be created there. Try to move this point
with the mouse, and note that it is constrained to stay on the edge of the circle, but
otherwise can move freely. Finally, use the command PP=>P Mid (also under Point)
and pick point B and then the point constrained to be on the edge of the circle. This



20 CHAPTER 2. TUTORIAL

command creates a point that will always be the midpoint between the two points. (You
may want to draw the line segment between B and C to see that the midpoint (D) is
on the line between them, but do what you like.)

AA BB

CC

DD

Figure 2.4: Midpoint
Ref1/Midpoint.T [M]

At this point, you should have a drawing that looks something like what is illustrated
in Figure 2.4.

Now let’s learn some geometry. Click down on the point that’s constrained to be on
the edge of the circle (the one labeled C—not the one labeled B), and move the mouse
around and around the circle, watching what happens to the midpoint D. Notice that
the midpoint seems to go around also, and seems to sweep out a circle of its own.

We can make this even more obvious by clicking on the midpointD to select it (notice
that when selected, it is displayed with bolder lines). Then, using the Color selector
button in the command area, change the color to Smear and the midpoint’s color will
change to a medium shade of gray.

Click down on the point labeled C constrained to be on the edge and move it around
the circle again. This time, the midpoint will smear and you can see that all its valid
positions seem to lie on a smaller circle passing through points A and B. You should
get a picture something like that in Figure 2.5.

Figure 2.5: Circle-Point Midpoint Theorem
Ref1/Smearmidpoint.T [M]

Let’s try a couple of other things—click on the PP=>P Mid command and create a
new midpoint between your smearing midpoint and the point constrained to the circle’s
edge. Make that have the smear color as well, and again move the circle-constrained



2.5. MODIFYING YOUR SIMPLE DRAWING 21

point around. Both midpoints sweep out circles, but the new one is 3/4 the size of the
original circle.

Does it matter that the fixed point is on the circle? Can you construct a Geometer
diagram where the other end of the segment is not B on the circle’s boundary, but is
somewhere else, either inside or outside the circle? What is the general situation? Can
you figure out why?

2.5 Modifying Your Simple Drawing

OK. Your drawing is pretty boring—except for the smearing, it’s all one color, and you
only used a few different commands to make it. Feel free to play around with the other
commands to see what you can figure out. You can’t get into serious trouble, and the
only recommendation is to avoid the Edit Geometry command in the Edit pulldown
menu. The Rpt Set Color button may be a little mysterious as well.

One of the most useful commands is found under the Edit pulldown menu—Edit Name
(This is such a commonly used command that you can also access it with Ctrl-n—hold
down the Ctrl key while you type an “n”). Select a point or a line in your drawing by
clicking on it and issue the Edit Name command. A little box pops up with the old
name (if it had one), and you can edit it or type in a completely new name. (If it has a
name that you want to get rid of, just backspace away the name when the dialog box
comes up. The point or line will then be unlabeled.)

Although only certain primitives display their names on the screen (points, lines, and
angles‡), you can name anything, and this is sometimes useful because the Describe
Geometry command will use this name when it tells you what’s selected. If you don’t
give something a name, Geometer will make up a name for you, and Geometer is not
very imaginative. Its point names all look like A, B, . . . , Z, a, b, . . . , z, 1, 2, 3, 4, . . . .

Click on things to select them, and try changing their colors, point type, and so on.
Obviously, you can’t change the point type of a line, or the angle type of a point, but
most commands make sense.

Basically the name on every button in the upper part of the command area includes
an indication of what it makes, and what’s required to make it. The basic primitives
that you can make include points, lines, circles, polygons, angles, and conic sections.
The command CC=>P says that two circles are required to make a point at their inter-
section. A lot of the commands do the “obvious” thing: PP=>L gives a line passing
through two points, LC=>P gives the point at the intersection of a line and a circle
(which you must click on in that order—line first, then circle), et cetera.

Sometimes there’s additional information. We saw the “Mid” in PP=>P Mid that found
a point that’s the midpoint of two others; PL=>L Perp generates a line that’s perpen-
dicular to a line and passes through a point, and CC=>Ext Tan yields a line (it’s in the
Line section) which is the external tangent to two circles.

‡And “flts” which will be discussed later



22 CHAPTER 2. TUTORIAL

Let’s take a slightly closer look at the CC=>P command which makes a point at the
intersection of two circles. But which one? Circles usually intersect in either two
places or none. How does this command work? Try it out, or look ahead in the next
section where all the commands are described in detail to get the details.

Keep in mind that while you’re fiddling with commands, you can always look in the
little command feedback window to see what Geometer needs next. The command
feedback window is just above the Cancel Repeat Mode button. (Even then, you can
get into trouble. For example, if you’ve got four points in your drawing and you click on
the 5P=>Con command, you will then need to select 5 different points. You can click
on the first four with no problems, but Geometer will keep asking you to “Pick Point
5” no matter what you do, since it insists on having different points for that particular
command. Geometer is currently too stupid to look ahead to make sure there’s enough
stuff defined to allow a command to succeed, so if you get stuck, you can simply click
on a new command in the middle of trying to execute the impossible command to abort
it.)

If you start a new drawing using the New command in the File pulldown menu, it’s
almost certain that the first commands you’ll issue will be a few Free P commands.
All the others require some geometry to be there already (a line needs two points to
connect, a circle needs a center and an edge, or three points on its outline, et cetera).
Similarly, before you can issue the LC=>P command (that makes a new point at the
intersection of a line and a circle), you’d better have a line and a circle on the screen. If
they don’t intersect, that’s fine—try making a circle and a line that doesn’t go through
it, issue the LC=>P command and click on the line and circle as you are asked for
them. No point appears, but as you move the line across the circle (or the circle across
the line, of course), the new point will suddenly appear. Now, for fun, connect that
“ephemeral” point with another to make a line. As you move the original circle and
line to make them intersect or not, both the ephemeral point and the line based on it
will appear and disappear. This may seem strange, but trust me—this is a good thing!

Another “good thing” that may seem disturbing at first is that Geometer considers
every line to be infinitely long, even though it may be displayed as a short segment (the
line type can be “segment”, “ray”, or “line”). If the extension of the segment hits the
circle, you’ll get the point at the intersection. Geometer does try to avoid selecting
a line except when you click on a drawn part of it, however. Make a line between
two points that’s of line-type “Segment” and click near it to see where it’s sensitive to
selection. Then change it to line-type “line” and notice that you no longer need to click
between the two points to select it.

If you’re short on ideas to try, here’s something. Make a demonstration of the fact that
the three altitudes of a triangle also meet in a point. An altitude is a line that drops
from a point perpendicularly to the opposite side of the triangle. You’ll probably want
to use the command, PL=>L Perp. It takes a point and a line, and constructs the line
through the point and perpendicular to the line.

Or just see what you can do in the way of generating geometric art by making some
constrained linkage with some of the moving parts drawn in the “Smear” color.



2.6. �USING THE TEXT EDITOR 23

2.6 �Using The Text Editor

Before we go on to cover more of the common commands, here’s one more thing you
should try. Make some sort of simple drawing that includes at least a few lines and
points, and for fun, change the colors of a couple of them—in fact, make the first point
you create red (it should have the name “A” if you started with the New command).
Don’t make things too complicated either—include at most a dozen objects so it’s easy
to see what’s going on.

You’re going to edit the textual version of your diagram. This is more “exciting” in the
sense that you’ll now have an opportunity to really foul things up, but remember that
if you get into trouble, you can always delete all the text in the file and save the empty
file, and you’ll at least be back to an empty drawing.

Under the Edit pulldown menu, select the Edit Geometry command. A small text editor
window will appear that contains some strange-looking text. Take a look at it—it’s just
a textual description of the drawing.
Assuming you used the buttons from the command menu, every line (except for the
first that contains Geometer version information) represents an object on the screen.
Your red point named “A” will have an entry (probably on the second line of the file)
that looks like this:

v1 = .free(-0.420784, 0.212947, .red, "A");

The numbers represent the current coordinates on the screen, so the ones in the example
line above will be different from yours, but the rest should look about the same. “v1” is
the internal name of the point, “.free” says that it is a free (unconstrained) point that
you can move with your mouse, the coordinates tell where it is in the x and y directions
(the initial screen runs roughly from -1.0 to 1.0 in both dimensions), the “.red” tells
the color, and the “"A"” says that the point is to be displayed on the screen using the
name “A”.
Now, using the editor (it’s a simple, mouse-based, cut-and-paste editor with noth-
ing fancy about it), change the line to look as follows, with the “.red” changed to
“.magenta”, the name “A” changed to “Fred”, and both of the coordinates are changed
to 0:

v1 = .free(0,0, .magenta, "Fred");

Use the Save command in the editor’s File pulldown menu and the results will appear
on the screen. The new point will be colored magenta, it’ll be labeled “Fred” instead
of “A”, and it will appear in the exact center of the drawing area, since you changed its
coordinates to x = 0 and y = 0.

Other than that, everything is exactly as it was, and you can still click on the “Fred”
point and move it around. After moving it, issue the Edit Geometry command and
you’ll see that your changes are still represented—the point will still be called “Fred”
and it will still be magenta, but (since you moved it), the coordinates will probably no
longer be 0 and 0.
Let’s try a couple of other things with the editor before we continue with Geometer’s
basic features. Edit the geometry again (using the Edit Geometry command in the Edit



24 CHAPTER 2. TUTORIAL

pulldown) and add a name to one of your lines as follows. Suppose the line description
originally looked like this:

l1 = .l.vv(v2, v1);

Change it to this:

l1 = .l.vv(v2, v1, "Line");

Finally, type an entirely new line like this after the end of all the other lines in the file
displayed in the text editor window:

.text("Here’s some displayed text.", .green);

(Be sure to get all the punctuation right, including the periods in the initial “.text” and
the “.green”.)

When you save the file, the line will have the name “Line” next to it, and “Here’s some
displayed text.” will appear in green on the left of your window’s drawing area.

If you make a typing error, Geometer is pretty stupid about figuring out exactly what’s
wrong, but it’ll give you some clue in an alert window, and will then return you to the
editor with the first bad line highlighted. Or at least what it thinks is the bad line—it
may be reading the next line before it notices that you’ve left something out of the
previous. If this happens, find the error, fix it, and save again. If you’ve been doing a
lot of editing and have made a lot of errors, Geometer will only find one at a time, and
will keep popping up that editor window until you’ve fixed them all.

If you really foul things up and you just want to bail out to the situation before you
tried to edit the file, use the Quit command in the pulldown menu.

2.7 An Easy Example

Let’s make a diagram that allows you to specify the lengths of three segments. The
diagram then constructs a triangle whose sides are equal to those segment lengths.

We would like a diagram like that in Figure 2.6 but without those extra circles. The
diagram contains the three segments in the upper left whose lengths we can adjust with
the mouse, and the resulting triangle is displayed below. If we can get a diagram like
the one displayed, we can simply make all the circles the invisible color and we will
have exactly what we want.

To make the drawing in the figure, first create six points to control the lengths AB,
CD and EF of the sides of the desired triangle. Connect them with line segments if
you wish. Next, create an arbitrary free point in the drawing area (which is called G
in the figure) to be one vertex of our final triangle. If we draw a circle around G with
radius equal to AB, then we can pick any point on that circle (H in the diagram) and
that point will be a distance AB from G. In other words GH = AB. This is a good
way to copy a distance.



2.8. AN EASIER EXAMPLE 25

aa
bb

cc

aabb cc

AA
CC
EE

BB
DD

FF

GG HH

II

Figure 2.6: Triangle from Three Segments
Ref1/TriConstruct.T [M]

To draw the circle, use the Ctr PP=>C command. Pick G as the center and then pickA
andB as the two reference points. The circle drawn will thus have center G and radius
equal to the distance between the reference points, or AB in this case.

Next, use the P on C command and click anywhere on the circle to create H . Connect
G and H with PP=>L.

Now create circles about G and H with radii CD and EF , exactly as we just did. At
the point of intersection of these circles must lie the third vertex of the triangle, since
it will thus be CD away fromG and EF away fromH . To find the intersection of two
circles use the CC=>P command. This will create vertex I which we then connect to
vertices G and H to complete our triangle.

We can now adjust the lengths of the segments by moving the points A, B, . . . , F .

2.8 An Easier Example

AA
CC

BB
DD

EE FFGG

Figure 2.7: Add Two Segment Lengths
Ref1/Addsegs.T [M]

The second example is even easier, especially if you have just seen the previous ex-
ample. The problem is this: construct a Geometer diagram where you can adjust the
lengths of two segments and the diagram will display a new segment whose length is



26 CHAPTER 2. TUTORIAL

the sum of the lengths of those two. It will look something like the previous example,
but with only two adjustable segments above, and one final segment as the result as
displayed in Figure 2.7.

The solution is quite simple. Begin as you did before by making two segmentsAB and
CD with four free points. You will be able to adjust these lengths in the final diagram.
Next, create a free point in the drawing area and make two circles around it of radii
AB and CD. Choose F on one of the circles, draw a line (not a line segment—if
Geometer draws a segment, click on the Line Type button in the command window
and select Line as the type) through F andE, and (using LC=>P) find the intersection
of that line with the other circle at the point G on the other side of E from F .

Clearly GF is the required segment. The length EF is the same as AB and EG is the
same as CD. But GF = GE +EF , so we are done.

2.9 A More Difficult Example

he problem in this section is a bit trickier, but if you have paid attention to the last two
sections, it is not that difficult.

In this section we will consider an example that is a bit more difficult. The actual
construction will depend on a geometric observation, and the construction itself is also
a bit more complicated.

The way to learn the most is to try to draw the example yourself without reading more.
Then, whether you succeed or not, read the description here, since the problem is not
only solved, but the figure is modified in such a way to make it a useful for teaching
the concept in a class.

2.9.1 Tangent Circles Problem

A1A1
B1B1
C1C1

A2A2
B2B2
C2C2

BB AA

CC

Figure 2.8: Three Tangent Circles
Ref1/TangentCircs.T [M]

Here is the problem: Given three lengths, construct a set of three circles that are mutu-
ally tangent and have those three lengths as their radii. In figure 2.8 you can adjust the



2.9. A MORE DIFFICULT EXAMPLE 27

three lengths by moving the points labeled A2, B2 and C2 at the top of the diagram.
As you do so, the three circles change size appropriately to maintain their tangency.

Without reading further, try to make this drawing. As a hint, think about where the
centers of those circles must be.

2.9.2 The Solution

The key observation is that if the radii of the three circles centered at A, B and C are
to be a, b, and c, respectively, then the centers A and B must be a distance a+ b apart,
B and C must be b+ c apart, and A and C must be a+ c apart.

Thus the solution is pretty easy. First, we need to construct line segments that have
the lengths d1 = a + b, d2 = b + c and d3 = c + a. Then we need to construct a
triangle having these three segments as lengths. The vertices of this triangle will serve
as centers for the three circles.

It is easy to construct a line segment that is the sum of two segments—just draw a line
and from a single point, draw circles having radii equal to the two lengths. The points
on opposite sides of the single point where they intersect the line will be separated by
a length that is the sum of the two lengths.

In this way the three lengths of the desired triangle could be constructed. Once we
know the lengths d1, d2 and d3, it is easy to construct the triangle. Draw circles of radii
d2 and d3 about the two ends of a segment of length d1. The point where those circles
intersect is d2 from one end and d3 from the other, so we are done.

Being lazy, we would like to minimize the number of times we have to copy lengths, so
here is a reasonable way to do the construction. Assume that you have the three lengths
a, b and c laid out as in Figure 2.8. Draw a new line with a point ”P” on it. Using P
as the center, draw circles of radius a and b. (This can be done with the Ctr PP=>C
command. This command first takes the center of a circle and then uses the distance
between the two points you select as the radius of the circle. In Geometer you simply
need to select V as the center and then the endpointsA1 and A2 of the length-defining
segment as your radius to obtain the first circle, for example.)

aa
bb

A1A1 A2A2

VV

B1B1 B2B2

AA BB

Figure 2.9: Adding Radii
Ref1/Tan1.D [D]



28 CHAPTER 2. TUTORIAL

On one side of P find the intersection of one of the circles and on the other, the inter-
section with the other. The distance between these two intersection points will be a+b.
See Figure 2.9.

Now we have identified A and B on our triangle, and they are clearly separated by
a+ b.

Now draw a third circle about V of radius c. It should be clear that the distance from
B to the intersection of that line with the circle on the other side of V from B is b+ c
and that the distance fromA to intersection of that circle on the other side of V fromA
is a + c. Thus we can draw two circles centered at A and B having edge points at the
two intersections with the line of the circle of radius c centered at V . The intersection
of these circles yields the location of the point C.

To complete the diagram, draw circles of radius a, b, and c about points A, B and C,
respectively. To clear up the clutter, you probably will want to change the color of all
your auxiliary lines to the invisible color.

At this point the problem is solved, but suppose you would like to convert your diagram
to a beautiful one that would be more suitable for a classroom presentation. Load the
diagram Ref1/TangentCircs.T and play with it as you read these notes. Here are
some things that you might do:

1. You may want to change the names of the points on the controlling segments to
A1,A2, . . . , C2 to make it clear to the viewer that the segmentA1A2 controls the
length of the radius of the circle centered at A. You can also name the segment
A1A2 a, et cetera, to make the correspondence even more clear.

2. If A1 and A2 are free points, as you drag them around, the figure will certainly
work, but it is much more pleasing if you can just drag A2 and it moves on a
line parallel to B1B2 and C1C2. To do this in the diagram, A1, B1 and C1 are
pinned points. Pinned points cannot be moved. To create a pinned point, look in
the Primitives pulldown menu under Points.

Next, another point is chosen (pinned and invisible) that determines the three
horizontal lines from A1, B1 and C1. The points A2, B2 and C2 are constrained
to lie on those lines. Then visible line segments are drawn from A1 to A2, et
cetera.

3. Color-coordinate the drawing. All the lengths and points associated with A are
one color, with B another, and so on.

4. To make it completely clear that the radii of the final circles are equal to a, b
and c, we need to draw those as well. AV and BV can be drawn easily, but
we need to find the intersections of the lines AC with the circles and BC with
the circles. Draw those lines, find the intersections using LC=>P, make the
lines invisible, and then draw the shorter segments to those intersections in the
appropriate colors.

5. Add some text to the diagram to explain what is going on with the Text command
under the Primitives pulldown menu.



2.9. A MORE DIFFICULT EXAMPLE 29

6. Finally, to assure that the lines A1A2, B1B2 and C1C2 are parallel and evenly
spaced, use the text editor to modify the coordinates of the pinned points so that
the lines are perfectly horizontal and evenly spaced.

Here is a complete listing of the Geometer code to produce the diagram:

.geometry "version 0.60";

v1 = .pinned(-0.78, 0.85, .red, "A\sub{1}");

v2 = .pinned(-0.78, 0.7, .green, "B\sub{1}");

v3 = .pinned(-0.78, 0.55, .cyan, "C\sub{1}");

v4 = .pinned(0.78, 0.85, .in);

v5 = .pinned(0.78, 0.7, .in);

v6 = .pinned(0.78, 0.55, .in);

l1 = .l.vv(v1, v4, .in);

l2 = .l.vv(v2, v5, .in);

l3 = .l.vv(v3, v6, .in);

v7 = .vonl(l1, -0.452096, 0.85, .red, "A\sub{2}");

v8 = .vonl(l2, -0.598802, 0.7, .green, "B\sub{2}");

v9 = .vonl(l3, -0.38024, 0.55, .cyan, "C\sub{2}");

l4 = .l.vv(v1, v7, .red);

l5 = .l.vv(v2, v8, .green);

l6 = .l.vv(v3, v9, .cyan);

v10 = .free(-0.517964, -0.0898204, .in);

v11 = .free(-0.0269461, -0.0898204, .in, "V");

l7 = .l.vv(v10, v11, .in, .longline);

c1 = .c.ctrvv(v11, v1, v7, .in);

c2 = .c.ctrvv(v11, v2, v8, .in);

v12 = .v.lc(l7, c1, 1, .red, "A");

v13 = .v.lc(l7, c2, 2, .green, "B");

c3 = .c.ctrvv(v11, v3, v9, .in);

v14 = .v.lc(l7, c3, 1, .in);

v15 = .v.lc(l7, c3, 2, .in);

c4 = .c.vv(v12, v15, .in);

c5 = .c.vv(v13, v14, .in);

v16 = .v.cc(c4, c5, 2, .cyan, "C");

c6 = .c.ctrvv(v16, v3, v9, .cyan);

c8 = .c.ctrvv(v13, v2, v8, .green);

c9 = .c.ctrvv(v12, v1, v7, .red);

l8 = .l.vv(v12, v16, .in);

l9 = .l.vv(v16, v13, .in);

v17 = .v.lc(l8, c6, 1, .in);

v18 = .v.lc(l9, c6, 2, .in);

l10 = .l.vv(v12, v11, .red);

l11 = .l.vv(v12, v17, .red);

l12 = .l.vv(v17, v16, .cyan);

l13 = .l.vv(v16, v18, .cyan);



30 CHAPTER 2. TUTORIAL

l14 = .l.vv(v18, v13, .green);

l15 = .l.vv(v13, v11, .green);

.text("Given three lengths, construct three mutually

tangent circles having those three lengths

as their radii.");



Chapter 3

Geometer Usage Strategies

Since you are now studying geometry and trigonometry, I will give
you a problem. A ship sails the ocean. It left Boston with a cargo of wool.
It grosses 200 tons. It is bound for Le Havre. The mainmast is broken, the
cabin boy is on deck, there are 12 passengers aboard, the wind is blowing
East-North-East, the clock points to a quarter past three in the afternoon.
It is the month of May. How old is the captain?

Gustave Flaubert

3.1 Using Diagrams

The use of diagrams is essential to understanding geometry, but paradoxically, they can
almost never count on them for proof. The diagrams primarily provide intuition.

Figure 3.1: Misleading Diagram
Ref1/Badtriangle.D [D]

Everyone has seen examples like that in Figure 3.1, where one geometric object (in this
case the 5-12-13 right triangle on the left) is cut into pieces that are rearranged (on the
right) to form the same object, but missing a piece. Where did the extra area go? (Hint:
There are three triangles in each of the two figures—are they all similar?)

31



32 CHAPTER 3. GEOMETER USAGE STRATEGIES

But more disturbing things can happen, especially if the drawings are not accurate.
Consider Figure 3.2, which can be used to “prove” that a right angle is greater than
90◦.

AA

BB

DD

CC

EE

OO

Figure 3.2: Bogus Proof
Ref1/Incorrect.D [D]

Start with an arbitrary rectangle ABCD as in the figure, and using a compass, draw
an arc of a circle centered at C, and passing through B, that goes a little outside the
segment BC—to point E.

SinceABCD is a rectangle,∠ADC = ∠BCD = 90◦. Since ∠BCE is a little bigger
than zero,∠DCE is a little bigger than 90◦. We will “prove” that∠ADC = ∠DCE—
something that is obviously not true.

Here is the bogus argument. Construct the perpendicular bisectors of the segmentsAB
and AE. Since those perpendicular bisectors are clearly not parallel, they will meet at
some point O.

SinceABCD is a rectangle, the perpendicular bisector ofAB is also the perpendicular
bisector of DC, so all the points on it are equidistant fromD and C. ThereforeDO =
CO. By similar reasoning, O is equidistant from A and E, so AO = EO.

Points B and E are on the same circle centered at C, so BC = CE, and since ABCD
is a rectangle,AD = BC = CE.

So to summarize,DO = CO, AD = CE, andAO = EO. Therefore the two triangles
ADO and ECO are congruent since they share three equal pairs of sides (using SSS
congruence). Therefore ∠ECO = ∠ADO, and we can subtract the equal angles
∠CDO and ∠DCO to obtain the result we want—that ∠ADC = ∠ECD.

Well, it is clearly not true, but every step seems correct. What’s wrong? The answer is
that the diagram is not drawn as accurately as it could be. (In fact, the author cheated
and had to misuse Geometer to get the desired misleading effect.)



3.1. USING DIAGRAMS 33

AA

BB

DD

CC

EE

OO

Figure 3.3: Correct Figure
Ref1/Correct.T [M]

Figure 3.3 shows an accurately drawn diagram of the situation, and it is instantly ob-
vious what went wrong—the line segment EO lies on the outside of the rectangle. In
fact, if you check in the correct figure, ∠ADO = ∠ECO, which is what we proved.

The point is that an accurate figure can correct some very mysterious problems, and
computers allow you to draw extremely accurate figures without too much effort.

AA

BB

CC

A’A’ B’B’

C’C’

HH

H’H’

Figure 3.4: Possible Orthocenter Positions
Ref1/Orthoerror.T [M]

Other dangers arise because a single figure may not show all of the possibilities. A
proof of some property of the orthocenter of a triangle (the orthocenter is where the
three altitudes meet) must work whether the orthocenter lies inside or outside or on the
triangle. If a proof depends on an interior orthocenter, it is not necessarily valid.

Figure 3.4 illustrates both possibilities for triangles 4ABC with orthocenter H and
4A′B′C ′ with orthocenterH ′. Suppose that only the diagram on the left were consid-
ered, and one step in the proof were something like this:

Connect the orthocenter H to the three vertices of the triangle forming three smaller



34 CHAPTER 3. GEOMETER USAGE STRATEGIES

triangles. The sum of the areas of those triangles is the area of the original:

A(4AHB) +A(4BHC) +A(4CHA) = A(4ABC).

Clearly that is not true for4A′B′C ′ on the right of Figure 3.4, so this is a nice example
of an error that can be made based on an incorrect diagram∗.

(On the other hand, we do see something quite interesting in the pair of diagrams in the
figure. Notice on the right that B′ appears to be the orthocenter of 4A′H ′C ′. Is that
always true?)

Finally, a great example of where a theorem simply is not true with a different figure
is illustrated by Fagnano’s Theorem. Fagnano’s theorem states something about an
acute-angled triangle that is simply not true if the triangle contains an obtuse angle.
If the drawing is made with a triangle containing an obtuse angle, it is clear that the
theorem fails, but if the “proof” is based only on a drawing of an acute-angled triangle,
the “prover” may not notice that the theorem does not always hold.

Here is another nice example where a computer can be very helpful. Consider the
following “theorem”:

AA

BB

CC

PP

Figure 3.5: Equal Inscribed Circles
Ref1/Badcircs.T [M]

In 4ABC, point P is chosen in the interior of the triangle and lines PA, PB, and
PC are drawn. If the inscribed circles of triangles4APB,4BPC, and4CPA have
equal radii, show that P is the incenter of4ABC (see Figure 3.5).

It is tough to prove because it is not true! But for small triangles, it is very close. In
Figure 3.5, when P is the incenter, the differences of the radii are around one part in a
thousand. This is very difficult to see with your eyes, but a computer geometry program
shows the error instantly.

These last three examples provide even more reason to use computer drawn figures,
where the figures can be manipulated to see if the theorem is true in all cases, and if
the proposed proof is valid for all cases.

∗With signed areas (positive and negative areas), it may be possible that the proof continues to hold,
depending on the rest of the proof.



3.2. BASIC TECHNIQUES 35

3.2 Basic Techniques

Here is a list of things to try when presented with a new geometry problem:

• Draw an accurate figure. With Geometer or another computer geometry pro-
gram, this is easy. If there are different configurations possible, draw those as
well.

• Look at the figure sideways and upside-down. For example, many people are
conditioned to thinking of the base of a triangle as the edge that is parallel to
the bottom of the page, and is closest to the bottom of the page. That is because
when the definition of the base of a triangle was presented, it was drawn that way
in the textbook, and the English word “base” itself implies “bottom”. But any
side of a triangle can be its base. So if a base and an altitude of a triangle are
needed to calculate its area, do not get locked into the mental frame of mind that
the base is on the bottom and the altitude goes up and down—every triangle has
three bases and three altitudes and any pair can be used equally well to calculate
the area.

In a similar way, right angles need not have their sides parallel to the edges of the
textbook. It looks better that way, so figures in books are usually so drawn, but
in real problems, triangles can be oriented in any which way. In fact, sometimes
when you finally find that right angle that cracks the problem, you will swear
that it was deliberately hiding itself from you.

• Do not stop looking after you find something. For example, if you are trying to
solve a problem and you find a couple of triangles that you can prove congruent
or similar or something, remember that there may be more than one pair. If you
cannot solve the problem with the first set, maybe there is a second (or a third,
or forth, . . . ).

• If you do not seem to be making progress, make sure that you are trying to use
all the given information. For example, if a point lies on the circumcircle of a
triangle, how can you use that fact? You know that the point and the vertices of
the triangle are all equidistant from some point (the circumcenter). Is that useful?

• Remember to try indirect proofs. Assume the theorem is false and see if that
leads to some preposterous result. Many important theorems in mathematics
(geometry included) cannot be proven directly and must be proven by showing
that the failure of the theorem leads to a contradiction.

• Look at simple situations. For example, if you are trying to prove some property
of general polygons, it is best to check that they work on triangles and quadrilat-
erals. If it is a result about triangles, look at simple triangles—right triangles or
equilateral triangles, or 3-4-5 triangles.

• Do a complete calculation for simple cases. For example, if you are trying to
show that the medians of a triangle meet at a point that is 2/3 of the distance



36 CHAPTER 3. GEOMETER USAGE STRATEGIES

from the vertex to the opposite side, do the calculation by hand on an example
where you know everything—perhaps an equilateral triangle, or a 45◦– 45◦– 90◦

triangle.

• Think about similar problems you have seen and how they were solved.

• Mentally summarize techniques that are used to do that particular sort of prob-
lem. For example, if you need to show that four points lie on a circle, think of
the two or three standard ways to show this.

3.3 Using Computers Effectively

This section deals with techniques that are particularly well-suited to geometric inves-
tigations using computer geometry programs, including Geometer.

Assuming that you are not just fooling around and have a specific problem to work on,
there are plenty of things you can do to simplify your search for a solution. Here are
some of them:

• Draw an accurate diagram. Learn to use your computer program to draw the
figure exactly as it appears in the problem statement.

• Use features like color and line-stippling to keep track of what you are doing.
For example, if you need to draw some auxiliary lines that you know you will
change to the invisible color later, color them red while you need to work with
them. Similarly, if you draw all three altitudes of a triangle, color them all the
same, but in a different color from the other lines in the figure.

• Move any points that are not constrained and see how the diagram moves, just
to get a feel for why it is true. Or perhaps it is not true in which case your job is
much simpler.

• Test the limits of the diagram to see what happens. In other words, if the theorem
you are trying to prove is about all triangles, be sure to try weird shapes as well
as the common ones. Make it equilateral (approximately, of course). Make it a
right triangle. Make the sides as different as possible. Make the triangle long and
skinny. Try triangles with all acute angles. Try triangles with an obtuse angle
near 180◦.

• If possible, go beyond the limits and see why the theorem fails. For example,
suppose the theorem deals with a simple quadrilateral (where “simple” means
that the edges do not cross each other). First make it so the lines almost cross
(test the limits). Then make them cross and see why (or if) the theorem fails.
Surprisingly, some theorems continue to work. A great example to try for this is
to prove that if you connect the midpoints of a quadrilateral in order, the resulting
figure is a parallelogram. It turns out that this is true even if the edges of the
original quadrilateral cross each other.



3.3. USING COMPUTERS EFFECTIVELY 37

• Another way to go beyond the limits is to omit each of the conditions of the
theorem and see why it fails. If the theorem says something about a right triangle,
see what happens with a triangle that does not contain a 90◦ angle. Sometimes
you may be surprised to learn that a condition is not necessary.

• As you are modifying the figure, look for other patterns. Some are obvious—do
two lines seem to remain parallel? If so, maybe you can prove they are and that
fact will help. A bit harder to check is to see if some pair of angles stays the
same. If you know which angles you are looking for this is not hard, but if you
are just groping for a way to start, there are usually a lot of possibilities.

• It is hard to check some things like “Do these four points remain on a circle?”
Luckily, you can construct a circle through any three given points. Pick three of
the points, draw the circle through them, and then modify the diagram to see if
the fourth point stays on the circle with the other three (at least to the accuracy
of your eye).

• Similarly, you can check to see if three points seem to lie on a line by drawing
the line through two of them and playing with the diagram to see if the other
point also seems to remain on that same line.

• If an experiment like one of the two examples above fails—the four points do
not stay on a circle, or the three points do not stay on the line, be sure to delete
the bad circle/line before proceeding so that you do not get confused.

• If you are a power user, you can often have the program display lengths, ratios,
areas, et cetera, so you can see, for example, if a ratio of lengths seems to stay
constant or not.

• � If you are thinking about using inversion to solve a problem, it is easy to draw
a circle and invert the objects of interest in it. Then you can try moving that
circle around to see if any configurations make the inverted drawing easier to
work with.

• Remember to use different colors, styles, et cetera, to keep things straight. In a
complex diagram if you are looking at four points to see the interactions between
them and you are afraid you will lose track of exactly which points they are, paint
them all green. You can always change them back to more reasonable colors
later.

• Do not feel compelled to use the computer program—it is just another tool, and
not necessarily the best tool. It is often easier to doodle with pen on paper if high
accuracy is not required. It is also sometimes a good idea to use the computer
to create a good drawing and then to print one or more copies of high-quality
versions of the problem on paper, on which you can doodle with your pen.



38 CHAPTER 3. GEOMETER USAGE STRATEGIES



Chapter 4

Basic Reference

This chapter of the reference manual lists all the most common commands for Geome-
ter. All of them are accessible using the GUI (graphical user interface). (Of course all
of them are also accessible via the text editor.)

4.1 Geometer’s Philosophy

Now that you’ve been led by the hand through a couple of examples, you probably
have a pretty good feeling for how Geometer operates. Thus as new commands are
introduced, you probably won’t find it necessary to try every one of them, but do try a
few—especially the ones that are particularly confusing or interesting.

Geometer is basically a simple constraint solving system. Each new item that appears
in a Geometer diagram must be either an unconstrained element (like a free point), or
it must be based on previously defined objects. The only geometry that’s completely
free is the free point, so most diagrams will be based on one or more of those.

Other unconstrained objects that can appear include text and numbers, but nothing
depends on text, and numbers will be discussed in the advanced section.

In addition, there are some partially constrained points—a point that can move, but is
constrained to lie on a line, a circle or a conic section, for example.

If the theorem you’re trying to illustrate requires an unconstrained line or circle, just
construct that line or circle from free points in one of the usual ways, and move or
reshape the line or circle by moving the free points. (There are other ways to do this,
but again, that’s an advanced topic.)

For every redisplay of the current diagram, Geometer re-evaluates the entire file one
line at a time, in order. (Actually, it’s quite a bit cleverer than that, but the net result will
always be the same as if it had done exactly this—except that the technique Geometer
uses will get a redisplay a lot faster.)

39



40 CHAPTER 4. BASIC REFERENCE

4.2 Entering Geometry

This section is a description of all the commands you can use to enter geometric prim-
itives. Of these, the most commonly used commands can be found as buttons in the
upper part of the command menu on the right side of your window, but there are many
more, all of which are listed in the pulldown menus under Primitives. In every case, if
you click on the command’s button, or use the pulldown menu, Geometer will produce
a single instance of the primitive. If you hold down the Ctrl key when using the com-
mand menu or pulldown (you can’t double-click these), Geometer will go into repeat
mode for that command and you can make as many instances of it as you like. To exit
repeat mode, use the Cancel Repeat Mode button at the bottom of the command menu
(or type Ctrl-g), or click on another command without using the Ctrl button.

As soon as a new item is created, it is automatically selected. This is because the
property-setting commands (like color) affect the selected item, and it’s very common
to create an item and decide immediately when you see it that you want it to be a
different color or have a different style. Since newly-created items are selected, you
merely need to click on the correct new color button to change the color of a new point,
or click on the Point Type button to change how it looks on the screen.

This is not a list of all the constraints—there are additional constraints based on non-
geometric primitives, but they are discussed in the advanced sections. All the com-
mands below are accessed with the GUI (graphical user interface); the other constraints
must be entered with a text editor.

4.2.1 Point Creation Commands

Here are the ways to make new points from the graphical interface. Remember that
many of them appear only in the Primitives pulldown menu. When new points are
created, they automatically have a name generated, starting with “A”, then “B”, and
so on. There’s a command in the Edit pulldown menu to toggle this on and off. The
command is called Point Names and has a keyboard shortcut of Ctrl-t.

Free P. Click anywhere in the drawing area to create a completely free point that can
later be moved by the mouse. It will have no constraints whatsoever on its move-
ments.

P on L. Click on a line, and a new point will be created that is constrained to lie on
the given line. If you move the point with your mouse, it will stay locked on the
line. If you move the line (by moving other points upon which it depends), the
partially constrained point will move in such a way that it remains on that line.
In fact, it is simply projected to the new line (moved to the closest point on the
line) over and over as the line changes.)

P on C. This is exactly the same as above, except that the newly created point is con-
strained to stay on a circle, and is projected back to the circle if the circle changes.



4.2. ENTERING GEOMETRY 41

P on Conic. The same as above, but the point is constrained to stay on a conic sec-
tion. This and the points mentioned above are the only ones you can move with
a mouse. All the others, and in fact, all the other geometric primitives are com-
pletely constrained.

Pinned P. This is just like a free pinned, except that after it is placed, you will be unable
to move it. (Of course you can change it or delete it using the editor, but pinned
points are useful for constructing a diagram with certain points immovable.)

LL=>P. Construct the (completely constrained) point that lies at the intersection of
two lines. If you know a bit about projective geometry, even if the lines are
parallel, a point is created at their “intersection at infinity”. If you don’t know
any projective geometry, don’t worry about it, but this is another “good thing”.

PP=>P Mid. Construct the point that’s midway between the other two.

LC=>P. Construct the point that lies at the intersection of the given line and circle.
Depending on the configurations of the line and circle, there may be zero, one,
or two possibilities for the location of this point. To get the one you want, click
on the line and circle near to where you want the point to occur, if there are two
possibilities. Note: Sometimes as you twist the geometry, the point may jump
to the other solution, although this is rare. What is going on is that to solve
for the intersections, Geometer is basically solving a quadratic equation which
may have two roots, and when you pick the intersection point, you’re telling
Geometer which root to use. As the diagram changes when you move points,
the root you want may change. If this causes problems, there are almost always
ways to get around them with alternate constructions.

CC=>P. The same as above, but this time pick the point that lies at the intersection of
two circles. All the same instructions and warnings hold because just as with a
line and a circle, two circles can intersect in zero, one, or two places.

PPP=>P Bis. This creates a point that lies on the angle bisector of the other three
points and inside the angle. What’s meant by “inside” the angle is a bit tricky—
see the subsection on angles, below.

C=>P Ctr. Given a circle, this command generates the point that lies at its center.

LP=>P Mirror. This reflects a point across a line. The new point lies on the opposite
side of the line, the same distance from the line as the old point, and so that if
you connected the new point to the old one with a line, the connecting line would
be perpendicular to the line of reflection.

PC=>P Inv. The new point is the inversion of the old one through the circle. It and
the old point lie on the same ray from the center of the circle. If O is the center
of the circle, V is the old point, W is the new one, and r is the radius of the
circle, the distances of V and W from the center satisfy the following equation:
OV · OW = r2.



42 CHAPTER 4. BASIC REFERENCE

APP=>P. A new point is constructed so that it and the two given points form the given
angle.

LCon=>P. The new point lies at the intersection of the given line and conic section.
There may be zero, one, or two intersections. The intersection used is closest to
where you clicked on the conic section with the mouse.

LCP=>P Other. The new point is at the intersection of the given line and circle, and is
guaranteed to be different from the given point. This is useful if you create one
of the intersections of a line and a circle and later need the other one.

LCC=>P Other. The new point is at the intersection of the two circles, and is guaran-
teed to be different from the given point. This is useful if you create one of the
intersections of the two circles and later need the other one.

PPP=>P Harmonic. The new point is the harmonic conjugate of the other three. In
other words, if the first three points are A, B, and C, the newly-created point
X will satisfy H(AC,BX). No attempt is made to assure that the three given
points lie on a line. If they do not, the position of the new point will not make
much geometric sense.

4.2.2 �Conic Creation

5P=>Con. This creates a conic section passing through the five given points. A conic
section can be a circle, an ellipse, a parabola, or a hyperbola. There are also
“degenerate” conics that consist of a pair of crossing lines that can occur if the
five points are lined up exactly right (or exactly wrong, depending on what you’re
trying to do).

5L=>Con. This creates a conic section that is tangent to all five of the given lines.

4.2.3 New Angle

PPP=>A. Select three points where the second point you pick will be at the vertex or
“corner” of the angle. The ray from the vertex to the first point forms the first
side of the angle and the ray from the vertex to the third point forms the second
side. The inside of the angle goes counter-clockwise from the first ray to the
second. In other words, if you click on points A, B, and C to form an angle, the
angle runs from the ray

−−→
BA counter-clockwise to the ray

−−→
BC. Depending on the

orientation of A, B, and C, this may be the “long way around”, and “inside” the
angle may not be what you expect. There is a Flip Angle command in the Edit
pulldown menu that you can use if you get it wrong. After creation, the angle
is automatically selected, so if you notice you got it backwards, just issue the
Flip Angle command immediately – it operates on the selected angle.



4.2. ENTERING GEOMETRY 43

4.2.4 Making New Lines

PP=>L. Make the line connecting the two points.

PL=>L Perp. Construct a line through the point and perpendicular to the line.

PL=>L Par. Construct a new line passing through the point and parallel to the given
line.

PC=>L Tan. Construct the line through the point and tangent to the circle. Assuming
the point is outside the circle, there are two possibilities for this line, so click on
the side of the circle where you’d like the line to be tangent. If the point is on
the circle, there’s only one possibility, and if it’s inside the circle, you won’t get
anything.

CC=>Ex Tan. Construct a line externally tangent to the two circles. There are gener-
ally two possibilities for this line, so click on the desired sides of the circles to
get the correct one.

CC=>In Tan. Same as the command above, except make the internal tangent line.
Again, there are generally two possibilities.

PP=>L Perp Bis. This constructs the line that is perpendicular to the line connecting
the given points, and cuts that line midway between them.

PCon=>L Tan. The line created goes through the given point and is tangent to the
given conic section. There may be zero, one, or two such tangent lines.

4.2.5 New Circles

Ctr Edg=>C. The first point you pick will be the center of the circle and the second
will be on its edge.

PPP=>C. The three points you pick will lie on the edge of the new circle.

Ctr PP=>C. The first point you pick will be the center of the new circle, and the radius
of the new circle will be the distance between the next two points you pick.
This command simulates the use of a compass that you’ve set to be the distance
between two points, and then use to create a circle with a (possibly) different
point as center.

PC Rad=>C. The first point you pick will be the center of the new circle, and the
radius of the circle will be exactly the same as the radius of the other circle
you select. This command basically provides a “compass” for straight-edge and
compass constructions. After you’ve drawn one circle with your compass, this
allows you to use the same compass setting to make a new circle of the same
size, but with a different center.



44 CHAPTER 4. BASIC REFERENCE

LC=>C Inv. This makes a line that’s the inversion of the given line through the given
circle. See the description of the inversion of a point through a circle in the point
creation commands (PC=>P Inv) for a definition of inversion. Every point of the
line is inverted to give a circle.

CC=>C Inv. The first given circle is inverted through the second in the same way as
are points and lines to give a new circle.

LLL=>C. A circle is formed that is tangent to the three given lines. There are gener-
ally four possibilities—one inside the triangle formed by the three lines, and one
outside each edge. To get the one you want, try to click on the edges near where
the circle will be tangent to the lines. If you want a circle that’s tangent outside
the triangle, it’s better to click far from the triangle on the lines where you want
tangency outside the triangle.

4.2.6 New Polygon

P..P=>Poly. Construct a polygon by clicking on its vertices in order, beginning with
the first. To complete the polygon, click again on the first vertex. The maximum
number of vertices allowed in a polygon is 10, so if you click on ten vertices, the
polygon will automatically be completed with those ten vertices. The polygon
need not be simple—the lines may cross each other.

Polygons are not particularly useful, except that you can find their area. The
polygon’s edges are not lines that can be used to create new primitives, for ex-
ample. (You can, of course, add lines around the polygon’s perimeter if you need
to treat it both as a polygon and as a collection of surrounding lines.)

4.2.7 New Arc

PPP=>Arc. Select three points where the second point you pick will be at the center
of the arc. Arcs are formed in exactly the same way as angles, but the first point
is used to determine the radius of the arc. Arcs are primarily used to make nice
illustrations—use circles if you’re going to want to find intersections with other
primitives.

Arcs are not circles and you can’t find the intersection of an arc with a line. Usu-
ally, arcs are simply used to make snazzy drawings, and the underlying circles
are also in the diagram, but drawn in an invisible color so they don’t clutter the
view.

4.2.8 �New Bézier Curve

PPPP=>Bez. The four given points are used as the control points for a Bézier curve
that’s parameterized from 0 to 1. This isn’t normally useful in standard Euclidean
geometry, but such curves are very useful in general graphics.



4.3. CHANGING PROPERTIES 45

4.3 Changing Properties

“Property” refers to the visual appearance of the geometric primitives. Changing these
properties has no effect on their geometric features—it just changes how they look on
the screen. Some properties are almost universal, like color, and some only apply to a
single kind of primitive.

Whenever you change a property, you change that property for the selected geometric
object and make that property the default for the next items you create (with the ex-
ception of the “invisible” color—if the current color is set to “invisible”, new items are
created in white). So if you want to make three red points and then 3 yellow points, set
the color to red, create your three points, click somewhere else so that the last point you
created is no longer selected, set the color to yellow, and make the final three points.
Alternatively, you can enter the repeated creation mode by double-clicking or holding
down the Ctrl key when you click on the “create point” command, click locations for
three points (which will be red), then click another location making a red (but selected)
point, click on the “yellow” color command (which will change the red point to yellow,
but will leave you in the repeat-creation mode), and then create the final two points.

If you want to change some property of an object you created a while ago, click on the
object to select it and then click on the new color, line style, or whatever. Sometimes it
is difficult to select the object you want because there are a bunch of other nearby ob-
jects that can’t be moved away (angles are notoriously bad), but you can cycle through
the different selection possibilities by simply holding down the Ctrl key while clicking
again in the same place that is over multiple selectable items.

As was the case with the geometry creation commands, the most useful of the prop-
erties can be changed directly using buttons on the command menu, but there are a
few others that are less common, and all of them except color are available under the
Styles pulldown menu entry. The item’s name, which is a sort of property, is also not
available from the menu—the name can only be accessed via the editor or the dialog
window you get when you type Ctrl-n.

Let’s start with the color.

4.3.1 Color

Every primitive has a color. The built-in standard colors include white, red, green,
blue, yellow, magenta, and cyan. The “Color” button in the middle of the command
menu shows the current default color and you can change it by clicking down on it and
sliding the cursor up and down while the mouse button is down.

In addition to the colors mentioned above, Geometer supports a few special colors:
invisible, smear, blink1, blink2 and blink3. You cannot make any color blink; there
are exactly three different blinking colors, so an object can be red or yellow or blink1
or blink2, et cetera. When an object is invisible, you can’t normally see it or select it.
This is great for hiding auxiliary lines you used in a construction. If you need to work
with invisible items, click on the Show Invis button in the command menu, and all



46 CHAPTER 4. BASIC REFERENCE

the invisible items (and the non-invisible ones as well) will be visible, selectable, and
movable, if they are points that are not completely constrained. Since one of the most
common color changes made in Geometer is to make construction lines and circles
invisible, there is a keyboard shortcut to make the current selection invisible: Ctrl-i.

There are three different blinking colors. When an item is drawn in one of these colors,
it blinks—either between black and one of three colors or between two more closely
related colors if you have a good enough graphics card on your computer. Blinking
colors are great for highlighting features of interest in a step of a proof or construction.

Finally, there’s a smear color. When an object is the smear color, when you drag a point
that item will smear itself over the screen as long as the mouse is down. This is great
for showing how one point moves in relationship with another, or to show how various
interesting curves can be generated based on geometric constraints.

There are keyboard shortcuts for the first 8 colors. If you hold down Ctrl-Shift-#,
where “#” is a number between 0 and 7, you will change the color to black, red, green,
yellow, blue magenta, cyan, and white, respectively.

Geometer also lets you define new colors and use them, but you have to use the text
editor. See the advanced section for more information.

The “invisible” color is also special in that if the button indicates that you’re making
invisible things, you will still make white ones. This is very handy, because when
you’re constructing something that will ultimately have a bunch of hidden features,
they’re drawn in white so you can work with them, but when they’re correct and you
want to hide them, you need only click on the Color button to make them invisible.
After all, the “invisible” choice is on top. Otherwise you’ve have to scroll the color
choices each time to get invisible, then click to unselect the primitive, then scroll back
to a visible color.

(If you change a selected item to have the invisible color, it remains selected. This is
because if you accidentally make it invisible, it disappears, and if it was an accident,
all you need to do is change the color again to bring it back into view.)

4.3.2 Point Type

As a mathematical ideal, each point is infinitely small, but the points can be drawn in
a number of different styles. These types include Diamond, Plus, Cross, Square, Solid,
Dot, Circle, and No Mark. No Mark is basically invisible, but the point can be selected
and moved. This is nice to use if you’ve got a polygon and you want users to be able to
grab and move the points, but you don’t want a glob of color on each point. Another use
is to put text at arbitrary locations in your drawing. Make a point (probably pinned, if
you don’t want it to move), and give it a name that is the text you want to display. Then
set the point type to “No Mark” and you’re done. The others types are just different
drawing styles for a point. By default, new points are represented by little circles.



4.3. CHANGING PROPERTIES 47

4.3.3 Line Types

There are three independent properties associated with a line—its stipple pattern, its
extent, and its marking. The stipple pattern can be solid, dashed, or dotted, the extent
can be a line (infinitely long in both directions) a ray (infinitely long in one direction—
the first point of the ray is the origin; the second marks the direction in which it goes
to infinity), and segments that begin and end on points. Some lines have no reasonable
definition of where the second point should be, so they often look like rays. Finally,
each line can be supplied with hash-marks—none, one, two, or three slashes across the
line that can be used in a diagram to show that it’s congruent to some other line.

Geometer tries to place hash marks and line names at the middle of the line, but that
may not make sense for certain lines. Usually Geometer’s guess is pretty good, but
if you really need something else, you can usually put a point on the line where you
want the name, and name the point. Make the point of type “No Mark”. Line names
are slightly different from points in that Geometer tries to avoid having them drawn on
top of the line, so if you really need one of these, you can put two points close together
on the line where you want the name, make a line connecting them, and name that line.
And make the points of type “No Mark” or invisible.

4.3.4 Polygon Types

Polygons can be filled in four styles—solid, outlined, and filled with three different
densities of stippling.

4.3.5 Angle Types

Angles can be drawn with one, two, or three rings, and with zero, one, or two hash
marks across the rings. These markings are generally used to indicate congruence of
angles. They can also be unmarked. There’s also an angle mark called “Right Ang”
that makes the right-angle square. Of course it’s up to you to make sure the angle is
a right angle. If it isn’t really, Geometer still does it’s best to put in the right-angle
square, sometimes with bizarre results.

4.3.6 Line Widths

Each primitive has a width, and those that are drawn with lines make use of this prop-
erty. A width of 1.0 is the default, but the width can be set with the menu to 0.5, 1.0,
2.0, 3.0, 4.0, and 6.0. All figures that are drawn with lines, including lines, circles,
arcs, conics, polygons, and Bézier curves are drawn with a width that is this number
times the normal width. Since screen resolutions may not make these changes visible,
using different colors to represent different features is often a better strategy. But if
your main goal is to produce PostScript figures for publication in a black and white
format, different line widths can be useful, and since printer resolutions are typically
much better than screen resolutions, this works well.



48 CHAPTER 4. BASIC REFERENCE

There is currently a bug in the PostScript code to draw conic sections with widths other
than 1.0. All conics are drawn with width 1.0.

4.4 Miscellaneous Elementary Commands

Under the pulldown menus are a variety of useful commands. Some of the more useful
of them have a speed key associated with them, and if that’s the case, it is indicated in
the pulldown entry. For example, the speed key equivalent for Open is Ctrl-o. The case
is sometimes important—Ctrl-s is the same as Save, while Ctrl-S (with the uppercase
“S”) is Save As.

Under the File pulldown menu appear most of the standard commands you’d expect
to find—New starts a new empty diagram, Open opens an existing diagram, ReOpen
repeats the previous Open command. ReOpen is useful if you’re editing a Geometer
file with your favorite (non-Geometer) editor, and you’d like to take a look at the
results in Geometer after you’ve written them out from the other editor.

Save and Save As save the current file, either using the current name, or using a name
that you provide. Insert inserts the contents of another file into the current one. The
internal names of the inserted items are “munged” so that it’s unlikely they’ll conflict
with any of the names in the current file. After you do an Insert, editing will be a bit
ugly because of the funny new names, but sometimes it’s a very useful command.

Print produces a PostScript file and tries to print it using the printing command in your
preferences file, and Save EPS makes an encapsulated PostScript file of the current
drawing in the current directory. See Section 4.7 for details.

Quit quits but asks you if you want to save any modifications you may have made, and
Quit-No Save doesn’t bother to ask—it just throws away all your work.

Under the Edit command, the most important command is Edit Geometry which will
be described in much greater detail in the next couple of chapters.

Edit Name lets you change the name of the currently selected primitive. A dialog box
appears containing the old name which you can edit, delete, or replace. When you exit
from the dialog box, the new name is applied to the primitive. Warning: Don’t try
to put the double-quote character (") in a primitive name. Right now Geometer just
throws them away if you try. I may fix this someday.

Delete Geometry is used to delete the selected item. This may be impossible because
other items depend on it. For example, if your diagram consists of two points and the
line connecting them, and you select one of the points and try to delete it, Geometer
will complain, and won’t let you do it until the line is deleted. The backspace key is a
keyboard shortcut for Delete Geometry.

It is often a bit difficult to tell exactly what depends on what by just looking at the dia-
gram, especially if there are some advanced features in use that don’t show up graphi-
cally. If you use the Edit Geometry command to look at the entire structure of the file,
it’s usually a lot easier to figure out what’s going on.



4.5. PROOF COMMANDS 49

Describe Geometry gives a short description of the currently selected primitive. It tells
you what it is, and what other items it’s constrained by.

The Flip Angle command that simply reverses the sense of an angle. It is extremely
easy to specify an angle backwards (in other words, to get the reflex angle of the one
you really wanted), and if you create one that goes the wrong way around, just type
Ctrl-a (or use the menu command) to flip it. Since you just created the angle, it will be
selected, so you don’t even have to select it—just issue the command.

Normally when you create a new point, Geometer supplies a name, likeA,B, . . . . You
can toggle this feature on and off with the Point Names command. Of course if you
later decide that an unnamed point needs a name, you can select the point and change
its name from the null name to whatever you want. If you are just experimenting,
Geometer’s names are usually fine, but if you want to make a diagram with specific
names, the easiest way is usually to toggle off the automatic name generation, and as
soon as you create a point, edit the name with the Edit Name command.

Display Value toggles on or off whether the size of an angle, polygon or segment is
displayed on the screen. If, in your diagram, two angles seem to be equal but you
can’t tell for sure, make Geometer angles of both of them, select each one, and use
this command so that their value will be displayed on the screen. The other values that
can be displayed are the length of a line segment and the area of a polygon. If you’ve
given the angle, polygon or segment a name, that name will be displayed; otherwise,
Geometer will display the value with the internal name. This command only applies
to the selected segment, polygon or angle.

The Edit Preferences command brings up a little dialog box where you can change your
default preferences. You can change such thing as the display size, the font sizes and
types, the point size, and whether or not to be in various modes by default. You can
also change the size of the text used in the Geometer user interface in this dialog, but
it will not take effect until Geometer is restarted.

4.5 Proof Commands

Assuming you’ve loaded a geometric proof prepared by someone else, the commands
in the Proof pulldown menu (also accessible via buttons in the lower right of the com-
mand menu) can be used to step through it. Constructing a diagram that displays your
own proof is an advanced topic, covered later.

But assuming you’re just looking at a proof, there are basically three things you’ll want
to do—go to the beginning of the proof (which is where it should be when you load it),
step forward to the next stage of the proof, or go back if you need to look at a previous
step.

The three commands that do this are Start Proof, Next Step, and Previous Step. On the
buttons, the names are shortened to Start, Next, and Prev, but they do the same thing.
Since going to the next step is the most common thing you’ll do, it has a keyboard
shortcut—just type the “n” character. Typing “p” is the shortcut for Prev



50 CHAPTER 4. BASIC REFERENCE

4.6 Finding Proofs: Testing Diagrams

Geometer has an extremely powerful feature that can help you find a proof by testing
a diagram. The basic idea is this: If you draw a diagram with various constraints, other
relationships may hold. For example, if you draw a triangle and its three medians,
all that you’ve required is that lines be drawn from each vertex of the triangle to the
midpoints of the opposite sides. Those three medians meet at a single point called
the centroid and they always will, even though you did not require it in the original
construction of the diagram.

In fact, almost every interesting theorem is a result of something similar—if you have
a diagram with certain constraints, other constraints are required to hold. For some-
thing like the concurrence of three medians, the result is obvious to the eye, but other
relationships may not be—that two segments are equal, for example, or that four points
happen to lie in a harmonic relationship.

Geometer includes a mechanism to help you search for such relationships in a semi-
automatic fashion. Here is how to use it:

1. Draw a Geometer diagram in the usual way, or load one from a prepared file.

2. Click on the Test Diagram command in the Proof pulldown menu.

3. Drag around various free points in the diagram to test a lot of different configu-
rations.

4. Click on the End Test command in the Proof pulldown menu.

5. Examine the list of relationships that appears in the window that pops up.

6. Dismiss the window, and continue using Geometer.

It works as follows. When you begin the test, Geometer looks at a very large collection
of possible relationships and makes a list of all that seem to be true of the diagram
in its initial configuration. Then, as you adjust the size and shape of the diagram,
Geometer checks and rechecks the list to see which relationships continue to hold.
If a relationship fails, it is dropped from the list. Finally, when you finish the test,
Geometer displays all the relationships that held throughout the test.

If a relationship “obviously” holds, Geometer does not bother to list it. For example, if
pointsA, B, C, andD are drawn, and also lines AB, AC, andAD, it is “obvious” that
those three lines intersect at a point (they are defined to do so, after all), so Geometer
will not report on this coincidence. But in the example above where the three medians
meet at a point, the coincidence is not at all obvious, so Geometer will report it.

As an exercise, try drawing a triangle and its three medians in Geometer, and then test
the diagram as described above. It should report the coincidence of those three lines.
Now, add to the same diagram the three altitudes of the triangle and be sure to have
points at the bases of the altitudes. Run the test again, and you will get a large set of
interesting relations. Among other things, Geometer will find that the three medians



4.6. FINDING PROOFS: TESTING DIAGRAMS 51

and the three feet of the altitudes all lie on a circle (this is the famous nine-point circle).
It will find some other circles as well—do you see why?

Unless they lie in a line, three points always lie on a circle, so obviously it is pointless
to indicate that, but if four points lie on a circle, that is interesting. In the example
above, there are six points on a circle, so Geometer goes nuts. It finds every set of four
points that work. For example, if the six points are A, B, C, D, E, and F , Geometer
will find that all 15 combinations: ABCD, ABCE, ABCF , ABDE, ABDF , . . . ,
CDEF lie on a circle. Before presenting the information to you, however, it condenses
it, reporting only that A, B, C, D, E, and F lie on a single circle.

Geometer, of course, does not guarantee that these relations hold exactly in every
case—it simply checks to see that they hold to within a certain numerical tolerance for
every configuration that you try. It may miss some relationships as well.

At present, these are the relationships that are checked:

• Three points lie on a line.
• Four points lie on a circle.
• Two lines are parallel or perpendicular.
• An angle is a right angle.
• Two angles are equal, complementary, or supplementary.
• Three lines meet at a point.
• Three circles meet at a point.
• Four points lie in a harmonic relationship.
• Two points are inverses of each other relative to a circle.
• Two segments have equal lengths.
• Two ratios of lengths are equal.
• Two triangle areas are the same.
• Ratios of triangle areas are equal.

The reason that you need to adjust the diagram between the beginning and end of the
test rather than having Geometer simply wiggle the points around a bit is that there
may be other relations you want to maintain but that are difficult to express using
Geometer’s features. For example, you may be looking for a theorem that holds only
for acute-angled triangles (like Fagnano’s Theorem), or you may want to look at sets
of circles that all intersect each other. If you simply let Geometer wiggle the points,
the triangle could be wiggled to make a non-acute-angled triangle, or so that some pair
of the circles don’t intersect.

It is good to do at least a little wiggling yourself—by chance, you may have drawn
your diagram so that some relation happens to hold for that particular configuration, but
would fail immediately with only a tiny movement of one of your points. Geometer
is a bit conservative about throwing out possible relations, particularly for equalities of
ratios, so it is a good idea to wiggle a few points. Usually only a very tiny amount of
movement is necessary to get rid of these chance relationships, however.

Ratio equalities are always listed last since there can be a lot of them. For example, if
you try to test the diagram for the diagram in Figure 4.1 (in which all the points except



52 CHAPTER 4. BASIC REFERENCE

AA

BB

CC

DD

EE

FF

GG

HH

II
JJ

KK

LL

MMNN

OO

Figure 4.1: Thousands of Relations
Ref1/Junk.T [M]

forA, B andC are midpoints of other segments), you will find that there are thousands
of ratios that are preserved.

Geometer only considers visible objects in visible colors. Thus you can construct
figures with lines and change them to be an invisible color if you do not want those
lines to be examined for possible relationships. This becomes important with complex
figures, as there are often many relationships to consider, and if you can reduce that
number, your job will be easier.

4.7 Printing

Geometer has two commands for printing: Print and Save EPS. The first prints to the
printer; the second makes an Encapsulated PostScript file suitable for printing (and
other things). The Print command relies on some information in your .geometerrc

file which can be changed with the Edit Preferences window available from the Edit
pulldown menu. (See Section 5.12.5).

Geometer can only produce a PostScript file, so you will need some method to print
that file. For example, if you have a PC, you can download GhostScript for free from
http://www.cs.wisc.edu/~ghost/ and use that as a printing engine.

Your system may have other methods to print PostScript files, and any of those should
also work.

If you are having trouble printing, here are some details that may help you:

• Although it only produces an Encapsulated PostScript (EPS) file, you have the
most control using the Save EPS command. It produces a file that looks almost
exactly like your current Geometer window with one screen pixel per printer’s
point. In other words, if you need a file that would exactly fill an 8.5× 11 inch
page, since there are 72 points per inch, you would want a Geometer window
that is 612 = 8.5 × 72 pixels wide and 792 pixels high. This can be set in the
Edit Preferences dialog available under the Edit pulldown menu.



4.8. ODDS AND ENDS 53

Then if you know how to print EPS files, just print this one outside the Geometer
program.

• When you issue the Print command Geometer scales your page to 550 pixels
wide by 730 high and produces an EPS file that centers this information in the
center of an 8.5×11 inch page. It then calls the system, using the print command
you specified in your preferences file together with the name of the EPS file it
just created.

• Geometer scales the current window so that it is as large as possible and still fits
on an 8.5× 11 inch page.

• The best way to get printing working is to have Geometer produce an EPS file
that you can experiment with and then test possible printing commands in a
command shell with that file. When you finally get exactly what you want, save
it into your preferences file.

For example, on a Windows NT 4.0 system with GhostScript installed, one pos-
sible way to print the file called test.eps with an attached HP LaserJet printer
from a command shell is:

gswin32 -sDEVICE=laserjet -dBATCH -dNOPAUSE test.eps

On a Macintosh running OS X, the command is much simpler:

lpr test.eps

To make Geometer use this command to print, place this text in the Print cmd:
input area in the Edit Preferences dialog:

gswin32 -sDEVICE=laserjet -dBATCH -dNOPAUSE %s

or

lpr %s

The “%s” informs Geometer that the file name is to be inserted at this point in
the command.

This is, of course, an extreme case. Your print command may be something as
simple as print %s.

4.8 Odds And Ends

There are still a few items in the menus that haven’t been covered yet, so they’re all
tossed together in this section.

The commands under Help give various sorts of help. Three of them display documen-
tation: Documentation. Tutorial and Reference Manual. You can also view a series of
Usage Tips that give general hints on the usage of various Geometer features, and in
addition, there is a Tool Tips command that causes Geometer to draw a little window
over any button in the command area that explains its use if you stop the mouse over it.



54 CHAPTER 4. BASIC REFERENCE

The feature is normally on. If you want to turn it on, click on the toggle button in the
tips display.

The Show Text button in the command menu turns on and off the display of text.
Sometimes a figure is complicated and the text overwrites some of the lines, and it’s
just easier to see what’s going on without the added clutter of the text.

The Rpt Set Color button in the command menu is a quick way to change a lot of items
to the same color. Before you press it, set the color button to indicate the new color
you want. Then press Rpt Set Color, and you will be in repeat mode, where every item
you click on will have its color changed to the set color. Use the Cancel Repeat Mode
button at the bottom of the command menu to get out of this mode.

Some diagrams have a built-in script. If you want to run the script (and a well-designed
diagram will tell you that a script exists), just press the Run Script button and the script
will do its thing. The keyboard shortcut is S. Building a script is an advanced topic.

Finally, there may be a bunch of “Layer Control” buttons which are described in detail
later. (They may not be visible—their display is controlled by an option.) Layers
control stepping through proofs and constructions and lots of other things. For now,
it’s safer not to mess with those attractive red buttons.

4.9 The File Chooser

When you issue an Open command in Geometer, a file chooser window pops up. It is
pretty obvious how to use it, but there are some hidden features that may be helpful.

Figure 4.2: File Chooser



4.9. THE FILE CHOOSER 55

Figure 4.2 is a screen-shot of the file chooser. By default, it will only display Geometer
files (with a .T or .D suffix).

The files displayed in the text area on the left are in the current directory. The current
directory is set when you start a Geometer session. If you started Geometer by double-
clicking on a file, the current directory will be the directory containing that file. If you
started Geometer by double-clicking on its icon, the current directory is initially set to
Geometer’s installation directory.

If you see the file you would like to open, in the text area, simply double-click on it and
you are done. If you would like to go to one of the subdirectories that are displayed
in bold-faced type, double click on the name. If you would like to go to the parent
directory, double-click on the “../” entry at the top of the text area.

You can also just type your pathnames into the area called “Filename:” at the bottom
of the chooser.

There is a Favorites button at the top of the chooser that allows you to go to certain
favorite directories. By default, this includes the root of the file system, your own
home directory, and Geometer’s installation directory. You can add or delete your
own preferred directories if you wish.

Finally, above the pathname in the “Filename:” text entry area, there are thin buttons
above each segment of the path. You can click on those to go up one or more directories
in a single step.



56 CHAPTER 4. BASIC REFERENCE



Chapter 5

�Advanced Features

This is by far the coolest thing in existence.
David Tristram, speaking about Geometer

For the majority of users, the topics in this chapter are not important. If all you want
to do is experiment with basic geometric relationships, the information in the previous
chapters should be sufficient.

Most of the topics here are not particularly difficult—just irrelevant for casual users.
Readers familiar with computer programming will find much of it trivial.

If you want to use Geometer to create beautiful drawings, illustrations for papers,
well-designed proofs for students, or animations, the material here is important.

Similarly, to do more than basic Euclidean geometry—if you want to get your hands
dirty and mess with the raw numerical coordinates, for example, this chapter will tell
you how.

If you just want to learn geometry, come back here only if there’s something specific
you need to know.

5.1 Geometry Via Text Editor

For the most common and important commands, Geometer provides a user-friendly
graphical user interface where you can click on buttons and drag around geometry with
a mouse to create and experiment with diagrams. But Geometer also has a “user-
hostile” interface via the text editor that provides a very efficient way to access many
of the extremely powerful features that are available.

The nice thing about Geometer is that you can use the two in combination—do most
of the work with the graphical user interface, and then submerge yourself in the textual
description to fine-tune your diagrams.

57



58 CHAPTER 5. �ADVANCED FEATURES

Geometer has a little editor built into it, and when you issue the Edit Geometry com-
mand (or with speed key Ctrl-e), it fires up this little editor on the textual description of
the currently viewed diagram. The advantage of using Geometer’s editor is that when
you finish your editing, Geometer immediately tries to reload the file, and if there are
errors, you will be returned to the editor with the offending line highlighted.

You’re welcome to use your favorite text editor as well (just make sure you save the
files in “text” or “ascii” format), but then each time you write the file, you’ll have to go
to Geometer and use the ReOpen command. Then if there are errors, you’ll have to go
back to your editor, find the right line, fix it, re-save, and so on. Most Geometer files
are tiny—a 100 line file would be quite large—so you probably don’t need the power
of a full-blown Emacs or equivalent.

Geometer’s editor is a basic cut-and-paste editor, but it does have a couple of Emacs-
type commands that you can learn about in the reference section (Section 5.12.3) on
the editor. But the files are usually so small that you won’t need to worry about this.

Between the time you fire up the editor with the Edit Geometry command and you
exit (using the Save command in the editor’s pull-down menu or the Ctrl-s keyboard
shortcut), you can only edit the text. The current diagram visible in the Geometer
window is frozen.

5.1.1 File Format

Let’s begin by looking at a simple example. The following is a text version of the
diagram that demonstrates that the three medians of a triangle meet at a point.

.geometry "version 0.2";

v1 = .free(-0.404517, 0.351129, "A");

v2 = .free(0.408624, 0.441478, "B");

v3 = .free(0.0513347, -0.301848, "C");

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

l3 = .l.vv(v3, v1);

v4 = .v.vvmid(v1, v2);

v5 = .v.vvmid(v2, v3);

v6 = .v.vvmid(v3, v1);

l4 = .l.vv(v1, v5);

l5 = .l.vv(v2, v6);

l6 = .l.vv(v3, v4);

// Here’s a comment.

At present, the first line doesn’t do anything – but leave it unchanged. In the future, it
may be used for version control, or to signal to future versions of Geometer that the
file is ancient and needs to be brought up to date. It can also signal to an older version
of geometer that it’s trying to read a more modern file, and there might be trouble.

The final line shows you how to put in a comment. The comment text will be saved and
rewritten, but it has no effect on the operation of Geometer. The “//” tells Geometer
to ignore all the text to the end of the line.



5.1. GEOMETRY VIA TEXT EDITOR 59

The rest of the lines in the file are more typical of Geometer commands. Geometer
uses a bunch of reserved words, and every reserved word begins with a period (and may
contain additional periods). Thus “.geometer”, “.free”, “.l.vv”, and “.v.vvmid” are
the reserved words used in this file.
If you’re writing your own Geometer program, you cannot accidentally have a conflict
with Geometer’s reserved words – even for future versions of Geometer. You cannot
use a leading period in your variable names and Geometer promises always to use one.
A user identifier begins with a letter (or the underscore character), and is followed by a
sequence of letters, digits, or the underscore character. Here are a few valid identifiers:

Line1 point_A m7 M7 Ma8qWs Iris1000 __7

Upper and lower case are distinguished, so m7 and M7 represent different variables.
The vast majority of Geometer’s commands have the form:

<variable> = <command>(<required params> <optional params>);

For example, in the second line:

v1 = .free(-0.404517, 0.351129, "A");

the variable is v1, which serves as the internal name of that geometric object. The
command is .free, the required parameters are the two floating-point numbers that
serve as the point’s coordinates, and the display (or external) name, "A", is an optional
parameter.
Since these commands will play a huge role in advanced diagrams, it’s convenient to
have a syntax to describe the command form. This will be covered in detail in the
reference section, but a couple of examples should make the form clear:

[P] = .v.ll([L], [L]);

The example above uses the strings [P] and [L] to indicate that any internal point or
line name can go in the corresponding slot. Note also that the optional parameters are
not listed – after the final line in the example above, you can add colors, linestyles,
external names, et cetera. In addition to [P] for point and [L] for line, circles are
represented by [C], angles by [A], and there are a bunch of others that we’ll introduce
as needed.

Typically, the non-geometric properties are optional. There is a set of default values
for each property, and if they are not specified in a command, the default value is used.
Here’s a list of the defaults (some of which won’t make sense to you yet):

Property Default Value
Color .white

Name (none)
Layer .l0on (all layers)
Line type .segment

Line stipple .solidline

Line mark .line0slash



60 CHAPTER 5. �ADVANCED FEATURES

Point type .circpoint

Angle type .ring1

Polygon type .outlinepoly

When Geometer writes a text file, it checks the properties of each item, and if they
have the default value, it omits them from the output. You may type them as input if
you’ve forgotten what the default is and want to be sure, but if it was a default value,
Geometer will not bother to write it on output.
For example, if you type in a line like this:

vert = .free(.123, .456, .white, .segment, .l5);

Geometer will cheerfully parse it and will paint the point white, and draw it as a
segment but only on layer 5. When you save the file, however, it will look like this:

vert = .free(.123, .456, .l5);

There’s no need to write “.white” or the “.segment” as they are defaults. Geometer
does, however, write the non-standard layering specification “.l5”.

So don’t spend a lot of time working on the formatting of your Geometer files in the
editor. As soon as you let Geometer write it out, it will do as it pleases, simplifying as
many things as possible and clobbering all of your careful formatting work.
When you type in properties, the order doesn’t matter. the following two lines are
exactly equivalent from Geometer’s point of view:

l1 = .l.vv(v1, v2, .dashline, .green);

and

l1 = .l.vv(v1, v2, .green, .dashline);

When you write a file, Geometer puts them in some order that may be different from
the order you typed them in, but the net result is the same. (The order of the required
parameters—in this case v1 and v2—does make a difference. Even here for a line
connecting two points, if that line is changed to be displayed as a ray, the origin of the
ray is the first point specified, so reversing v1 and v2 would flip the direction of the
ray.)

Look in the reference section at the end of this chapter for a concise list of the available
property types, and for a complete list of the Geometer commands, together with their
features.

In Geometer files, the parameters are separated by commas, and the commands are
terminated by a semicolon. There is no need for the commands to occupy a single
line; newlines and white space are ignored by Geometer (except, of course, within text
strings).

If it isn’t obvious already, Geometer tries to use sensible command names. Unfortu-
nately, the original name used for “point” was “vertex” so where you would expect to



5.1. GEOMETRY VIA TEXT EDITOR 61

see a “p” you will see a “v”. Other than that the command names are logical. After
the leading period, the first part of the name signifies what type of geometric object
is being created. After that is another period, followed by the types of things the new
item will depend upon. For example, to make a point where two lines intersect, use the
command “.v.ll”. To make a circle passing through three points, use “.c.vvv”.

Sometimes the name includes additional information. To make the line passing through
a point and parallel to another given line, use “.l.vlpar”. The command to make the
perpendicular line also requires a point and a line, so it’s name is “.l.vlperp”. This
convention makes it easy to remember most of the Geometer commands, but if you
have a bad memory, there’s always the reference section.

5.1.2 Names

Most items in Geometer have an internal name, and some of them have external names.
The internal name is what appears to the left of the “=” sign. For example, in

vert = .free(.123, .456, "Ogden Nash");

the internal name of the point is “vert”, and the external name is “Ogden Nash”. If
you’re going to use this vertexpoint as something that constrains another primitive, like
a line or a circle, use the internal name, “vert”. “Ogden Nash” will be the name you
see attached to the point on the computer screen. If there is no external name, all you’ll
see will be the point’s circle or diamond or whatever with no attached name.
The easiest way to think about how Geometer displays a file is to imagine that before
each redisplay it forgets everything, and starts looking at the file from the beginning
again. Thus, if you’ve typed in the following program (you must have typed it in, since
it’s got illegal semantics):

v1 = .free(.1, .1);

v2 = .free(.2, .2);

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

v3 = .free(.3, .3);

Geometer will do fine for the first 3 lines. v1 is a point at (.1, .1), v2 is another one at
(.2, .2), and l1 is a line connecting the two of them. But when it tries to interpret the
next line, it fails because it’s supposed to make a line connecting v2 and v3. It knows
what v2 is, but it can’t read ahead, so in spite of the fact that v3 is defined on the very
next line, an error is generated because when Geometer was trying to construct line
l2, it didn’t yet know what v3 was.

Every geometric primitive has an internal name, even if it isn’t used in later commands.
(This may change in the future – there’s no reason to require a user to think of names
for things that will not be used, but for now, that’s how it is.) Primitives like text that
can’t be involved in future commands never have a name.

The use Geometer makes of external names depends on exactly what it is that’s named.
If a point or a line has an external name, that name is drawn beside the point or the



62 CHAPTER 5. �ADVANCED FEATURES

middle of the line. If an angle has a name, the name is displayed on the interior of the
angle, where “interior” satisfies the usual conditions.

A number (called a “flt” (to remind you of a “floating point number”) in Geometer)
that has an external name is listed, together with its value, on the right side of the
drawing area. Thus, if you want to display the value of an angle as the user changes its
size, you’d put the angle’s size into an flt whose name was the name of the angle, and
its value will be continuously displayed.

The two most common values that you may want to display are the measure of an angle
or the length of a line segment. In either case, you can use the command Display Name
(Ctrl-T to make the value of the selected primitive visible on the screen. If the name
display is toggled on, Geometer will use the name of the primitive, if it exists, and
otherwise the internal name. In the Geometer file, if a primitive is to be displayed,
.display will appear as one of the properties. It is not an error to include this property
with items other than line segments or angles, but at present, it has no effect except in
those two cases.

Other items can currently take external names which are at present unused, except
in the Describe Geometry command which will always use the external name if it’s
available.

5.2 Layers

Geometer is conceptually drawing on any combination of 32 layers, numbered from 0
through 31. By default, it draws on all 32 of them. Any object can be drawn on any
combination of layers.

By default, the layer control commands are not visible. You can see them by choosing
the Show Layers command in the Edit pulldown menu. You can also change the setting
in your options file so that they are always displayed. To set your options, use the
Edit Preferences command in the Edit pulldown menu.

The user can view any combination of layers. By default, all the layers are visible, so
you can see everything.

When you step through a proof or other demonstration, however, the situation changes.
When you press the Start button, Geometer sets it so that you’re only viewing layer
number 0. Every time you press Next Geometer advances to display only the next
layer, so you’ll view layer 0 only, then only layer 1, then layer 2, et cetera. Similarly,
Prev goes to the previous layer. The Off command paradoxically turns on all the layers.
It has the strange name since most users will not see the layer commands displayed,
and will think of the Off command as turning off Geometer’s proof mode.

In the lower part of the command area there’s a little array of 16 buttons numbered 0
to 15. If they are checked, the corresponding layer is active. Active means that you
are currently viewing that layer, and if you are creating new geometric items, they will
only be visible on that combination of layers.



5.2. LAYERS 63

Only the state of first 16 layers are displayed in the control panel; the others are there,
and function, but almost no diagrams need to use the higher numbered layers, and they
can be accessed using the text editor. To change the active layers among the first 16,
simply click on the buttons to toggle them on or off. There’s a shortcut available too—
if you hold the Alt key down when you click on a layer, it toggles the state of that layer
and all the ones beyond. That way it’s easy to turn off or on all the rest of them.

It takes a bit of practice to get good at using the layers, but the proper way to program a
proof or demonstration is to make sure that just the “right” things appear on each layer.
You can look at some of the sample proofs, such as Ninepoint.T to see how it’s done.
Some things, like the basic diagram, will appear on all layers. Things that appear only
for a part of the proof, like construction lines, textual descriptions, et cetera, will appear
on only one or a few layers. If you want to emphasize something at one stage, but then
have it go back to a normal presentation for the rest, you can enter two versions of it,
perhaps in different colors. For example,

line1 = .l.vv(v1, v2, .l0, .l2on, .blue);

line1blink = .l.vv(v1, v2, .l1, .blink);

has two copies of exactly the same line which connects the points v1 and v2. On layer
0 and from layer 2 through 31 (that’s what .l2on means), the normal version is shown
in blue. But on layer 1, the same line is shown in a blinking color. Presumably there’s
some text on layer 1 pointing out the significance of this line during that stage of the
proof. If the situation is more complicated than this, however, your best bet is probably
to use layer colors, discussed later.
Geometer interprets a line as follows: If there are no layer commands, Geometer
assumes that the object appears on all layers, 0-31. If any layer command appears, the
assumption is that no layers are shown except the ones listed. Thus:

v = .v.ll(line1, line2, .l3, .l7);

will appear only on layers 3 and 7.
A very common situation is that you’d like to have an object appear from a certain layer
on to the end. For that reason, you can use commands like: .l7on which means that
the object in question appears on layer 7, and then on every layer after that. You can
mix these with other layer commands to get things like this:

line1 = .l.vv(v1, v2, .l0, .l5, .l8on);

This line will appear on layers 0, 5, and 8, 9, 10, . . . , 31.

Another situation that commonly occurs is that you’d like something to remain visible
from the beginning for a while, and then disappear. For that the “opposite” command
also exists. .tol7 as a layer specifier means that the primitives appear on every layer
up to and including layer 7.
If you type in overlapping layers, when Geometer writes the file, it will simplify it as
much as possible. For example, if you type in:

vert = .v.ll(line1, line2, .l0, .l1, .l5, .l7, .l8on, .l19);

and then you save the file, you’ll find that Geometer has written something like this:



64 CHAPTER 5. �ADVANCED FEATURES

vert = .v.ll(line1, line2, .tol1, .l5, .l7on);

Finally, if you’re writing a proof or demonstration, you’d like Geometer to begin dis-
playing only layer 0, so that the Next key will do the right thing without requiring the
user to press the Start button. For that reason, there’s a special layer command that con-
sists only of layer descriptions followed by semicolons to appear in a file to indicate
the starting configuration. Typically this will simply be:

.l0;

but Geometer can understand more complex starting configurations. For example, if
your file includes:

.l0; .l7; .l21on;

Geometer will start up with layers 0, 7, and 21, 22, ..., 31 visible, although why you’d
want to do that is hard to imagine.

Finally, if some strange combination of layers is visible, Next and Prev actually shift
the visible layers by one in either direction. In other words, if layers 1, 3, and 7 are
visible, a Next will make layers 2, 4, and 8 visible, and a Prev will make only layers 0,
2, and 6 visible. If only layer 1 is visible, Prev will not eliminate it. Similarly, a Next
with only layer 31 visible will leave only layer 31 visible.

Although layers work as advertised above, it is often much easier to use layer colors as
described in the next section.

For more advice on using layers, see the chapter on Programming Hints.

5.3 Line Widths

The width of the lines used to draw lines, circles, arcs, polygons, conics, and Bézier
curves is set to 1.0 by default. It can be set to any positive width with an entry that
looks something like this:

line = .l.vv(vert1, vert1, .width=3.0);

The “3.0” above can be replaced by any positive number. Although Geometer’s menu
entries only allow for a fixed set of widths, any positive width is legal, but non-standard
widths must be entered with the text editor. If the width is 1.0, that is the default, and
no entry is put in the text version of that primitive.

5.4 Layer Colors

Many times you would like to have a primitive appear in different colors, or perhaps not
appear at all as you advance through the steps of a proof or construction. The best way
to do that is with a combination of the layer and color commands. A single example is
probably enough to make the whole idea clear:



5.5. TEXT 65

line = .l.vv(vert1, vert2, [3 .in, .blink, 3 .white, .in]);

This line that connects vert1 with vert2 will appear on all layers, but for the first three
layers, layers 0, 1, and 2, it will have the invisible color. On layer 3 it will have the
blinking color, on layers 4, 5, and 6, it will have the color white, and then from layer 7
on, it will again have the invisible color.
You don’t have to use the multiples, or you can use them in combination with repeated
color specifications, so the primitive above is exactly equivalent to:

line = .l.vv(vert1, vert2, [.in, .in, .in,

.blink, .white, 2 .white, .in]);

although it will be written by Geometer in the previous (simplified) form.

The final color to appear is assumed to be in force for the rest of the layers, so in the
case above, after layer 7, the line will always be invisible.
If, in the control panel, not all layers are active and you create a new object, the latest
version of Geometer in fact creates the primitive on all layers, but with the layer colors
set so that the object will be invisible on all layers except for those that are active. For
example, if layers 0, 2, and 3 are active and you create a new point with the current
color of red, that point’s color specification will be:

[.red, .in, 2 .red, .in]

Similarly, if you change the color of an existing object when not all the layers are
active, then the color of that object will be changed only on the active layers. Suppose
that the existing object has a color specification of:

[.red, .in, 2 .red, .in]

and that the current layer specification is for layers 2 and 5, and that you select the
object and click on the color yellow. Only layers 2 and 5 will be changed to yellow,
and the resulting object will have a color specification of:

[.red, .in, .yellow, .red, .in, .yellow, .in]

5.5 Text

5.5.1 General Information

You’ve already seen plenty of examples of text entry. The most common command is
the .text command that allows you to enter text that will appear in a diagram to tell
the user what’s going on.
Like other primitives, text can be restricted to certain layers, and it can be drawn in
various colors. To draw a line of red text that appears only on layer 3, the following
will work:

.text("Text only on layer 3 in red.", .l3, .red);



66 CHAPTER 5. �ADVANCED FEATURES

The .text command can extend to more than one line, and if a newline character
appears in the text, a new line is started on the screen. For example, the following
lines:

.text{"Here is a line of text.

Here is the second line

Here is the fourth line.", .red);

will draw four lines of red text, where the third line is blank. In general, the text is
displayed on the screen in the order it appears in the file. Thus, the following strange
collection of lines in your file:

.text("Line 1 in red", .red, .l0);

.text("Line 1 in green", .green, .l1);

.text("Line 2 in yellow", .yellow, .l0);

would display first a red and then a yellow line on layer 0, and on layer 1, it would draw
a single line in green. Clearly, it’s a good idea to keep lines of adjacent text adjacent in
the file, but Geometer doesn’t require it.

5.5.2 Special Characters

It’s really useful to be able to display certain special characters in geometric descrip-
tions. For example, you’d like to use something like ∠ABC to talk about an angle, or
perhaps AB to represent the segment AB. Geometer has a limited ability to do this.
Geometer recognizes certain escape sequences in the text stream that are interpreted
to refer to special characters. For example, the line:

.text("The \angleABC is called \alpha.");

would display the following on the screen:

The ∠ABC is called α.

Geometer recognizes the following control sequences that generate special characters;

\triangle ∆ \angle ∠ \congruent ∼=
\similar ∼ \dotmath · \multiply ×
\fraction / \degrees ◦ \circlemultiply ⊗
\circleplus ⊕ \greaterequal ≥ \lessequal ≤
\perp ⊥ \sqrt

√
\therefore ∴

\alpha α \beta β \gamma γ
\delta δ \epsilon ε \zeta ζ
\eta η \theta θ \iota ι
\kappa κ \lambda λ \mu µ
\nu ν \xi ξ \omicron o
\pi π \rho ρ \sigma σ



5.6. NUMBERS AND CALCULATION 67

\tau τ \upsilon υ \phi φ
\chi χ \psi ψ \omega ω
\Gamma Γ \Delta ∆ \Theta Θ
\Lambda Λ \Xi Ξ \Pi Π
\Sigma Σ \Upsilon Υ \Phi Φ
\Psi Ψ \Omega Ω \cdot ·

If there are any special characters in the standard PostScript symbol font that you need
that are not included in the set above, you can enter them using the character
followed by the three-digit octal character. For example:

.text("Here is a copyright symbol: \323");

will yield:
Here is a copyright symbol: c©

Geometer can also display superscripts and subscripts as follows. The line:

.text("a\sup{2}=b\sub{3}");

will yield:
a2 = b3.

To get a symbol for a line segment, like AB, use this:

\overline{AB}

To get an arc symbol, like

)

AB, use this:

\arc{AB}

For now, don’t try to put special characters in superscripts, subscripts, or with overlines
or arcs. Geometer will just get confused and put some sort of garbage on the screen.

5.6 Numbers And Calculation

Sometimes it’s necessary just to work with numbers rather than with geometric figures.
For example, if you want to make a circle that has 1.72 the radius of another, you may
be able to figure out a way to do it geometrically, but it’s a heck of a lot easier if you
can just use numbers. For example, here’s a chunk of Geometer code that will make a
circle centered at v1 and passing through v2 and will, in addition, draw a circle centered
at v3 having a radius of π times the radius of the first circle:

c1 = .c.vv(v1, v2);

rad = .f.vv(v1, v2);

newrad = .f.rpn(rad, 3.14159265, .mul);

c2 = .c.vf(v3, newrad);



68 CHAPTER 5. �ADVANCED FEATURES

The first line is standard, but the second line says to make a number called “rad” whose
value is the distance between the points v1 and v2. The third line says to take the value
of rad, as a number, and to multiply it by 3.14159265, and to store the value in newrad.
Finally, the last line says to produce a circle of radius newrad centered at the point v3.
The “f” in the commands above is short for “flt” which you can think of as a floating
point number.

There is a whole series of commands that obtain, manipulate, and use floating point
numbers. The only access to them is via the editor interface—i.e. there is no way to
use them via the graphical user interface.

These numbers are usually used as coordinates, or as sizes in transformations, so be-
fore you can use them, you have to have some idea of Geometer’s coordinate system.
Earlier, we said that it goes roughly from -1.0 to 1.0 in both dimensions. This is exactly
true for a square display area, but if the display area is a little longer than wide or wider
than tall, the images would appear distorted with these coordinates. So what Geometer
does is to determine the minimum of the width and the height, and makes that mini-
mum length run from -1 to 1. Thus if the display window size were 500 pixels wide
and 400 high, the x coordinates would run from -1.25 to 1.25, and the y coordinates
from -1.0 to 1.0.
The numbers can also be used to describe angles, like 90◦. Most people measure angles
in degrees, mathematicians and computer programmers almost always measure them
in radians, where 2π radians is equal to 360◦. Geometer goes both ways, but if you do
nothing, it assumes you’re working with degrees. You can add a line to your file like
this:

.radianmode;

and if that line appears, all angles in your file will be expressed in radians. The default
setting is .degreemode;, but since it’s the default, it need never appear in your file.
In some of the examples that follow, I will include “.degreemode” explicitly just to
remind you that angles are measured that way. There’s no need to include it in a normal
diagram (although it is legal to include it, and Geometer will cheerfully eliminate it
from any output file it creates).

Here is a list of the all the commands involving flts that do not involve transformations.
Transformations are covered in the next section. In the command names, the appear-
ance of an “f” is used to indicate that a number (a “f”loating point number) is used or
produced. In the parameter list, a flt is represented by [F], [P] is a polygon, and [RPN]

stands for “rpn-expression”, which we’ll talk about later:

[P] = .v.ff([F], [F]);

[C] = .c.vf([P], [F]);

[F] = .f.vvvratio([P], [P], [P]);

[P] = .v.vvf([P], [P], [F]);

[F] = .f.vv([P], [P]);

[F] = .f.vxcoord([P]);

[F] = .f.vycoord([P]);

[A] = .a.f([F]);

[F] = .f.area([P]);

[F] = .f.rpn([RPN]);



5.6. NUMBERS AND CALCULATION 69

Most of these are fairly straight-forward. .v.ff makes a point using the two numbers
as its x and y coordinates. .c.vf produces a circle centered at the point, and having a
radius given by the number.

.f.vvvratio makes a number that is the ratio of the distances between the three points.
Typically, the points are on a line, and if they are called A, B, and C, then the number
produced is the ratio AB/AC. The points don’t have to be on a line, however.

Use .v.vvf to do the opposite – to produce a point with the given ratio of distances
relative to two other points. This command will produce the new point on the line
connecting the other two.

.f.vv produces a number that’s the distance between the two points, and .f.vxcoord

and .f.vycoord put the x and y coordinates into a number.
.a.f produces an angle of the given magnitude. The magnitude depends on whether
you’re in degree mode or radian mode (see above), so

.degreemode;

ang = .a.f(180);

and

.radianmode;

ang = .a.f(3.14159265);

have exactly the same net effect.

Finally, .f.area calculates the area of the polygon and puts it in the number. If the
polygon’s edges cross each other, you’ll get consistent results, but perhaps difficult to
interpret. Geometer simply treats the polygon as a series of triangles and adds those
together with signed areas.

So far we’ve just made and used numbers, but have no way to calculate with them. And
exactly what is it that you can put in place of an “f” in the examples above?
In every case, you can use a defined number, or a literal number. For example, if you
wanted to have a point whose x coordinate was locked at 0.1, but whose y coordinate
was the same as the distance between two other points, the following code would work:

v1 = .free(0.372188, 0.255624, "A");

v2 = .free(0.609407, 0.247444, "B");

ycoord = .f.vv(v1, v2);

v3 = .v.ff(0.100000, ycoord);

Geometer can also do more or less arbitrary calculations with these numbers, and all
of these are achieved by means of the .f.rpn command. The “rpn” refers to “reverse
Polish notation”, and within that command, Geometer supports a tiny PostScript-like
or Fourth-like language. The instructions consist of a series of command tokens, num-
ber variables, angles, and number literals. They are evaluated from left to right, as
follows:

A number literal, a number variable, or an angle will simply have its value pushed on
the execution stack. If it’s an angle, the actual number pushed on the stack will depend
on whether Geometer is in degree mode or in radian mode.



70 CHAPTER 5. �ADVANCED FEATURES

Every other possible entry is a Geometer reserved word, and each has some effect on
the contents of the stack. After all the entries are evaluated, the result is whatever is
left on the top of the stack.

Here’s a list of all the Geometer stack operators, and what each one does to the contents
of the stack:

.add The top two numbers are removed from the stack and are added. The result is
returned to the stack.

.sub The top two numbers are removed from the stack and subtracted. The result is
returned to the stack.

.mul The top two numbers are removed from the stack and multiplied together. The
result is returned to the stack.

.div The top two numbers are removed from the stack and divided. The result is
returned to the stack.

.mod The “modulo” function is applied to the top two numbers on the stack which are
then replaced by the result. For example, the sequence 17, 5, .mod will result
in a 2 on top of the stack, since 17(mod 5) = 2.

.neg The top number on the stack is negated.

.sin The trigonometric function sine is applied to the top number on the stack. The
number on the top of the stack is interpreted as an angle in degrees or radians,
depending on Geometer’s mode.

.cos The trigonometric function cosine is applied to the top number on the stack. The
number on the top of the stack is interpreted as an angle in degrees or radians,
depending on Geometer’s mode.

.tan The trigonometric tangent is taken of the top number on the stack. The number
on the top of the stack is interpreted as an angle in degrees or radians, depending
on Geometer’s mode.

.atan2 If the top two elements on the stack are x and y, the trigonometric arctangent
function is taken of x/y if y 6= 0. If y = 0 it’s like taking the arctangent of
an infinite number, positive or negative, depending on the sign of x. The angle
produced will be in degrees or radians, depending on Geometer’s mode.

.abs The top number on the stack is replaced by its absolute value.

.exp If x is the top number on the stack, it is replaced by ex.

.log If x is the top number on the stack, it is replaced by logx—the natural logarithm.

.rand A random number between 0.0 and 1.0 is placed on the top of the stack.



5.6. NUMBERS AND CALCULATION 71

.dup The top number on the stack is duplicated.

.clear The entire stack is cleared to empty.

.pop The top element on the stack is removed.

.roll The top two numbers on the stack are removed and are used to determine
a rotation of the stack. If the stack’s top two numbers are n and j, the top
n numbers remaining on the stack are rolled j positions. j can be positive or
negative. For example, if the stack consists originally of a, b, c, d, e, 4, 1, where
the “1” is on the right of the stack, then the top four elements are rotated by one
position, yielding a stack that looks like this: a, e, b, c, d.

.copy The top number on the stack is removed and is used as the number of items to
copy. Thus, an original stack that looks like this: a, b, c, d, e, 3 after the copy
operation would look like this: a, b, c, d, e, c, d, e.

.exch This operation exchanges the top two items on the stack.

.eq The top two numbers on the stack are removed and compared for equality. If they
are equal, a 1 is placed on the stack. If they’re unequal, a 0 is placed there.

.ne Just like .eq, except the comparison is for inequality.

.lt Same as .eq, except less-than.

.le Same as .eq, except less-than or equal.

.gt Same as .eq, except greater-than.

.ge Same as .eq, except greater-than or equal.

.round Rounds the top number on the stack to the nearest integer. Round basically
adds 0.5 and then does the .floor operation, described above.

.ceiling Replaces the top number on the stack with the smallest integer greater than
it. The ceiling is always an integer and it is always greater than or equal to the
number. It is only equal to the number if the number itself is an integer.

.floor Replaces the top number on the stack with the largest integer smaller than it.
It is always less than or equal to the number, and is equal to it only if the number
is an integer.

.truncate Truncates the top number on the stack to the integer closest to zero. Trun-
cate is like .floor (see above) for positive numbers and like .ceiling (see
above) for negative numbers.

The above doesn’t seem like much if you’ve never worked with reverse Polish notation,
but you can do just about any calculation you like using it. For example, here’s a little
Geometer program that will draw a graph of the function sinx+ cos 2x:



72 CHAPTER 5. �ADVANCED FEATURES

.geometry "version 0.2";

v1 = .free(-1.00204, -0.398773, "A");

v2 = .free(0.130879, -0.366053, "B");

xval = .f.vv(v1, v2);

yval = .f.rpn(xval, .sin, xval, 2.000000, .mul,

.cos, .add);

v3 = .v.ff(xval, yval, .smear);

It isn’t very interesting, because the values mostly lie outside the drawing window, and
need to be better scaled to make a reasonable diagram, but it does behave as advertised.
The x coordinate is simply taken to be the distance between the points v1 and v2. The
y coordinate is calculated using the rpn expression. Follow along to see what happens.
First the xval is placed on the stack and its sine is taken. Another copy of it is put on
the top of the stack (above sinx), then a 2 is added to the stack, the top two elements
are multiplied, yielding 2x on top, whose cosine is taken, and that result is added to
sinx below, yielding sinx + cos 2x. Those values are then used as the coordinates of
v3, which has a .smear color, so as you drag around v1 or v2, the point v3 will leave a
smeared track along the curve y = sinx+ cos 2x.

After each .f.rpn expression is evaluated, the stack is cleared, so you can’t pass in-
formation on to other commands, although this may occur in the future, so it’s a good
idea to leave only the final result you’re interested in on the stack when you’re done,
for compatibility with future versions of Geometer.

5.7 Transformation

It’s sometimes convenient, especially in scripts, to be able to move your objects around
on the screen. Most important motions are rigid, but from time to time it’s useful to
have non-rigid motions as well. Geometer provides a simple set of transformations
that can be applied to points yielding other points. Let’s begin with the simplest set:

[P] = .v.vtranslate([P], [F], [F]);

[P] = .v.vscale([P], [F], [F]);

[P] = .v.vrotate([P], [F]);

These operations yield a new point that’s transformed relative to the old one. The
.v.vtranslate command, for example, makes a new point that’s translated by the
given amounts in the x and y directions from the old one. In the following example:

v1 = .free(0, 0);

v2 = .v.vtranslate(v1, .3, .5);

the point v1 will be drawn at the center of the drawing area with coordinates (0, 0) and
v2 will be translated from v1 by .3 units in the x direction and .5 units in the y direction.
If you then grab v1 with your mouse and drag it around, v2 will remain .3 units to the
right and .5 units above v1.
The rotation and scaling commands, .v.vrotate and .v.vscale, do their rotation and
scaling relative to the origin at the center of the drawing area. So in the following
example:



5.7. TRANSFORMATION 73

.degreemode;

v1 = .free(.2, .2);

v2 = .v.vscale(v1, 2.0, 1.5);

v3 = .v.vrotate(v1, 45);

the x and y coordinates of v1 are multiplied by 2.0 and 1.5, respectively, to yield the
point v2 at (0.4, 0.3). Similarly, the rotation by 45◦ about the origin will put point v3
at (.28284, 0). The rotation is counter-clockwise about the origin, and since v1 lies on
the 45◦ line, it will be rotated to the 90◦ line, namely, the y axis.

In case you’ve never messed with geometric transformations, the order does make a
difference – a rotation followed by a translation is almost never the same as the trans-
lation followed by the rotation. Probably the best place to learn about this would be in
a textbook on computer graphics.
But just a couple of hints may be enough to get you through. If you’d like to rotate
about a point that’s not at the origin, you can translate it to the origin, then rotate, and
then translate back. So, for example, to rotate the point v1 about the point (.2, .3) by
48 degrees, the following chunk of code will do the trick:

.degreemode;

v2 = .v.vtranslate(v1, -.2, -.3, .in);

v3 = .v.vrotate(v2, 48, .in);

v4 = .v.vtranslate(v3, .2, .3);

The intermediate points v2 and v3 are painted the .in (= invisible) color so they won’t
appear in your diagram.

The trick above works great if you only have a point or two that you’d like to rotate
about an unusual origin. If you’d like to use the same operation on a whole set of
points, it would be a pain to make up all the intermediate points for each of the original
points.

Geometer has a primitive object called a transformation (listed as [X] in the syntax
charts, and as “x” within the command words). Once you build a transformation (like
a rotation of 48 degrees about the point (.2, .3), you can then apply it to a large series
of points.
Here’s the code to do exactly that, and then to transform all the vertices of the triangle
v1, v2, v3 to a new triangle v4, v5, v6:

v1 = .free(0, 0);

v2 = .free(.5, 0);

v3 = .free(0, .5);

id = .x.identity();

x1 = .x.translate(id, -.2, -.3);

x2 = .x.rotate(x1, 48);

x3 = .x.translate(x2, .2, .3);

v4 = .v.vx(v1, x3);

v5 = .v.vx(v2, x3);

v6 = .v.vx(v3, x3);

The code above builds a transformation starting from the identity, which represents
no transformation at all, by applying one transformation after the other to it. The



74 CHAPTER 5. �ADVANCED FEATURES

entire transformation that represents a rotation about the point (.2, .3) is saved in the
transformation called x3. Then x3 is applied to each of the vertices of the original
triangle in turn to make the new, rotated, triangle.
Here’s a list of all the commands that deal with transformations:

[X] = .x.identity();

[X] = .x.translate([X], [F], [F]);

[X] = .x.scale([X], [F], [F]);

[X] = .x.rotate([X], [F});

[P] = .v.vx([P], [X]);

[X] = .x.xxf([X], [X], [F]);

[X] = .x.f9([F], [F], [F], [F], [F], [F], [F], [F], [F]);

The use of the top 5 is obvious, but the final two require some explanation. .x.xxf is
a way to choose between two transforms, depending on the value of the number. If the
number is zero, the first transform is used; otherwise the second. This can be useful in
a script when you want to change from transform to transform in the middle.

The final one, .x.f9 allows you to specify a completely general affine transformation
using 9 numbers. The way transformations are handled internally is using 3 by 3 ma-
trices, which are multiplied together to generate more complex transformations. For
example, the rotation matrix is as follows, assuming that the angle of rotation is x:




cosx sinx 0
− sinx cosx 0

0 0 1


 .

Although the points are only two dimensional, a third entry, equal to 1.0 and called the
“w” coordinate) is added to them before the matrix multiplication. At the end, the new
x and y coordinates are divided by the new w coordinate to get the two dimensional
point. Usually this division is unnecessary – the w coordinate after transformation will
be equal to 1.0.

But as an example, let’s look at rotation by 30 degrees of the point (2, 1) The matrix
multiplication operation looks like this:

(2 1 1)




cos 30◦ sin30◦ 0
− sin 30◦ cos 30◦ 0

0 0 1


 .

Since cos 30◦ = .86602 and sin 30◦ = .5, the operation is:

(2 1 1)



.866025 .500000 0
−.500000 .86602 0

0 0 1


 = (1.23205 1.86602 1).

If we divide through by the resulting w coordinate of 1.0 (and it isn’t too hard to divide
by 1.0), we get the point (1.23205, 1.86602) which is the result of rotating the point
(2, 1) by 30 degrees in a counter-clockwise direction.



5.8. MACROS 75

For completeness, here are the matrices equivalent to translation by tx in the x direction
and ty in the y direction: 


1 0 0
0 1 0
tx ty 1


 ,

and of a scale by sx in the x direction and sy in the y direction:


sx 0 0
0 sy 0
0 0 1


 .

5.8 Macros

Imagine that you want to make a whole bunch of triangles connecting various sets of
three points. Without macros, the only way to proceed would be to put down a long
series of three points followed by the three lines that connect them. Each triangle would
thus require 3 lines of code. With macros, you can reduce this to 4 lines per triangle,
and with more complicated drawings, the savings can be far more.
Here’s how to do the triangle example using a triangle macro:

.geometry "version 0.2";

.macro triangle(.vertex v1, .vertex v2, .vertex v3)

{

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

l3 = .l.vv(v3, v1);

}

v1 = .free(-0.764826, 0.554192, "1");

v2 = .free(-0.515337, 0.766871, "2");

v3 = .free(-0.384458, 0.300613, "3");

v4 = .free(0.265849, 0.476483, "4");

v5 = .free(0.703476, 0.595092, "5");

v6 = .free(0.658487, -0.0429448, "6");

triangle(v1, v2, v3);

triangle(v4, v5, v6);

The macro triangle takes three parameters, all of which are points, and from them it
constructs three lines. Each time it is called, it generates a new set of three lines from
the given points.

At present, the macro facility is rather simple-minded – parameters can be any of the
usual types: .vertex, .line, .circle, .flt, .conic, et cetera.

If a name within the macro is either a parameter name or is a name of an item produced
within the macro, that local version is used. If it is not a parameter name or locally
generated item, Geometer assumes that it is a global value.

For example, the following macro will draw a line from the point that’s a parameter
“v” to the fixed point v0:



76 CHAPTER 5. �ADVANCED FEATURES

v0 = .pinned(0, 0);

.macro linetozero(.vertex v)

{

l1 = .l.vv(v0, v);

}

Macros can return a single value. For example, here is the syntax for a macro that takes
two points and returns a circle having the two points as a diameter:

.macro .circle diamcircle(.vertex v1, .vertex v2)

{

vmid = .v.vvmid(v1, v2, .in);

.return c = .c.vv(vmid, v1);

}

v1 = .free(-0.2975, -0.12);

v2 = .free(0.1975, -0.1825);

v3 = .free(0.045, 0.3225);

c1 = diamcircle(v1, v2, .red);

c2 = diamcircle(v1, v3, .green);

Note that the point “vmid” is colored invisible so that it doesn’t show up every time
you make a new circle. Note also that the macro calls that produce c1 and c2 can have
properties. In this case, the two different expansions of the macro will draw a red and
a green circle. If you want, you can then use c1 or c2 in future constructions.
There is a known bug in the Geometer macro package that does not allow you to pass
.flt parameters that are constant. For example, the following code will not work to
generate a point with coordinates (.3, .3):

.macro .vertex v(.flt f)

{

.return vv = .v.ff(f, f);

}

v1 = v(.3);

You can get around the bug with this minor modification to the code, since as long as
the .flt parameter is not constant, the macro code works fine:

.macro .vertex v(.flt f)

{

.return vv = .v.ff(f, f);

}

f3 = .f.rpn(.3);

v1 = v(f3);

5.9 Scripts

To put a diagram on auto-pilot so it will pass through a fixed set of positions, use the
.script command. It takes the following form:

[F] = .script([FLOAT], [FLOAT], [FLOAT]);



5.10. MORE ON COLORS 77

Each [FLOAT] represents a literal floating point number (in other words, you can’t put
in variable [F] types). In the command they are interpreted as the minimum value for
flt, its maximum value, and the step size. If a line like this appears in your file, it means
that when you press the Run Script button, the number on the left side of the “=” sign
will start at minimum and will take steps of the size indicated by the other parameter
until it reaches the maximum value. Thus, f = .script(0, 1, .01); will take 100
steps to proceed through the script. You can then use the value of f as you would any
other number. In radian mode, if you want an angle to run from 0 to 2π in steps of .02
radians, do this: f = .script(0, 6.2831853, .02);

As an example, here’s a simple script that drives a point in a circle of radius 1 about
the origin in 100 steps:

.geometry "version 0.2";

f = .script(0, 360, 3.6);

vx = .f.rpn(f, .cos);

vy = .f.rpn(f, .sin);

v = .v.ff(vx, vy);

f is the angle in degrees and runs from 0 to 360 (to go completely around the circle). We
then take the cosine and sine of the resulting number to generate the x and y coordinates
of the point v. Run the script, and v moves smoothly around in a circle.

Normally, the Run Script button in Geometer is deactivated, but as soon as a .script

command is read from the file, the button is activated. Only one script command is
allowed per Geometer file.

5.9.1 Recording Animations

It is possible to save an EPS file for each stage of a running script. If you use the
Print Script command in the File pull-down menu before running the script. This ac-
tivates the saving of Encapsulated PostScript files for one execution of the script. The
files are written in the same directory as the Geometer file and are given names related
to that file. For example, if the file name is Frog.T and there are 20 steps in the script,
PostScript files named Frog000.eps, Frog001.eps, . . . , Frog019.eps will be generated.

It is up to you to figure out what to do with those files, but various programs can be used
to combine them into animated GIFs that could be used on web pages, for example. For
a detailed example, see section 6.15 in the teacher’s tutorial chapter.

That’s all there is to the .script command, but it can be a very powerful tool.

5.10 More On Colors

There’s a little more to the color commands that was not described earlier. For example,
there is a color .black that can be used. Since the background is black, this command
is sort of like making it invisible, but such items can be selected (although you won’t



78 CHAPTER 5. �ADVANCED FEATURES

be able to tell except for any side effects you may cause on moving a selected, invisible
point).

In addition to all the non-colors like .smear, .blink, .blink1, .blink2 and .invisible

(or .in, for short), Geometer deals with 32 colors whose names are .c0, .c1, ..., .c31.
The first 8 of these have aliases: .c0 = .black, .c1 = .red, .c2 = .green, .c3 =
.yellow, .c4 = .blue, .c5 = .magenta, .c6 = .cyan, and .c7 = .white.
The colors from .c8 through .c15 are non-black, and .c16 on are simply white. How-
ever, you can redefine any of these colors (including the first 8, although you’d probably
be nuts to do so) as in the following example:

.c10 = (.4, .5, .8);

The three floating-point values must lie between 0.0 and 1.0 and they represent the
amount of red, green, and blue in the color to be displayed. The example above will
define color .c10 to use 40% of full red, 50% of full green, and 80% of full blue.

You can use the alternate color names exactly as you do the standard names like .red,
.blue, et cetera.

5.11 The Display Attribute

If .display appears in the property list of an angle or of a line segment, then the length
of the segment or measure of the angle (appropriately displayed in degrees or radians,
depending on the mode) is displayed with the name of the segment or angle in the
upper left corner of the window and is continuously updated.

5.12 Reference

5.12.1 Primitive Types

Here is a list of all the allowed properties:

Line types
.segment – joins the two endpoints
.ray – from first point forever through second
.longline – infinite line through the two points

Line Widths
.width=2.0 – (default is 1.0)

Line styles
.solidline – default
.dashline

.dotline

Line marks
.line0slash – default



5.12. REFERENCE 79

.line1slash

.line2slash

.line3slash

Polygon types
.outlinepoly – default
.solidpoly

.hashpoly

.hashpoly1

.hashpoly2

Point types
.circpoint – default
.diamond

.plus

.cross

.soliddiamond

.square

.dot

.nomark

Angle types
.ring1 = 1 ring – default
.ring2 = 2 rings
.ring3 = 3 rings
.slash1 = 1 ring with slash
.slash2 = 2 rings with slash
.slash3 = 3 rings with slash
.dslash1 = 1 ring with double slash
.dslash2 = 2 rings with double slash
.dslash3 = 3 rings with double slash
.right = right angle mark
.noangle = no angle mark

Colors
.white = .c7 = white – default
.black = .c0 = black
.red = .c1 = red
.green = .c2 = green
.yellow = .c3 = yellow
.blue = .c4 = blue
.magenta = .c5 = magenta
.cyan = .c6 = cyan
.invisible = .in = not normally drawn
.smear = color smears while point is dragged
.c8, .c9, ..., .c31 = additional colors
.blink = first blinking color
.blink1 = second blinking color
.blink2 = third blinking color

Layers



80 CHAPTER 5. �ADVANCED FEATURES

.l0, .l1, ..., .l31 (note: lower-case ’L’s)

.l0on, ..., .l31on – all layers from this number on

.tol0, ..., .tol31 – all layers up to the number
Example: .l7on = .l7, .l8, ..., .l31

Display Value
.display

Stack commands
.add, .sub, .mul, .div, .mod, .neg
.sin, .cos, .tan, .atan2, .abs, .exp,
.log, .rand, .dup, .clear, .pop, .roll
.floor, .ceiling, .round, .truncate, .copy, .exch,
.eq, .ne, .lt, .le, .gt, .ge

Names
anything enclosed in “double quotes”.

5.12.2 Command List

Here are forms of the rest of the recognized commands. Note that the set may increase
in the future as new primitives are added. There is no possibility of conflict with user-
defined names, since all the new primitives will be defined with names beginning with
a period.

In the listing below, only the required fields are specified; any number of additional
properties can be specified in any order. The types of the parameters are important and
are checked. For example, ”.l.vv”, which makes a line from two points, will barf if its
parameters are not variables representing points.

In what follows, [P] stands for any point identifier, [C], for any circle identifier, and
so on. The list of possibilities includes: [P] = vertex, [L] = line, [C] = circle, [CON] =
conic, [BEZ] = Bézier curve, [F] = flt, [X] = transformation, [A] = angle, [ARC] = arc,
[POLY] = polygon. [RPN] = a valid sequence of rpn commands.

Items like [INT], [FLOAT], and [HEX] indicate a fixed, floating point or hex number.
[INT2] represents an integer that is 1 or 2; [INT4] can take only the values 1, 2, 3, 4.
Hex numbers must have the form 0xhh...h, where h is a hex digit: 0, 1, ..., 9, a, b, ..., f.

Finally, [LAYER] and [COLOR] stand for a valid layer or color specification.

[P] = .free([FLOAT], [FLOAT]); Make a completely unconstrained point whose ini-
tial coordinates are given by the two floating-point numbers. The coordinate sys-
tem goes roughly from -1.0 to 1.0 in each direction, but obviously if the window
is non-square, this isn’t right. With a non-square window, the smaller dimension
goes from -1.0 to 1.0; the larger dimension is scaled appropriately. The point
(0, 0) is always exactly in the center of the drawing area.

[P] = .pinned([FLOAT], [FLOAT]); Exactly the same as .free, except that the new
point cannot be dragged with the mouse.



5.12. REFERENCE 81

[P] = .vonl([L], [FLOAT], [FLOAT]); Make a point constrained to be on the line,
so it has one degree of freedom. The floating point values are the point’s initial
coordinates (which need not be exactly on the line – the point will instantly be
projected to the line for the first display).

[P] = .vonc([C], [FLOAT], [FLOAT]); Make a point which is constrained to be on
the circle, so it has one degree of freedom. The floating point values are the
point’s initial coordinates (which need not be on the circle – the point will in-
stantly be projected to the circle for the first display).

[P] = .v.ff([F], [F]); The values of the [F]s are evaluated, and used as the point’s
x and y coordinates.

[P] = .v.vvmid([P], [P]); Make a point constrained to be the midpoint of the other
two points.

[P] = .v.ll([L], [L]); Make a point constrained to be at the intersection of the two
given lines, or at infinity in the appropriate direction if the lines are parallel.

[P] = .v.lc([L], [C], [INT2]); The point is at the intersection of the line and the
circle. Since there are two possible intersections, they are distinguished by the
value of the integer, which must be either 1 or 2.

[P] = .v.cc([C], [C], [INT2]); The point is at the intersection of the two circles.
Since there are two possible intersections, they are distinguished by the value of
the integer, which must be 1 or 2.

[P] = .v.vvf([P], [P], [F]); A new point is constructed between the first and sec-
ond point parameters in the ratio given by [F]. If �[F] is zero, the new point will
be on top of the first point. If the ratio is 1, it will be on top of the second. If
the ratio is 2/3, it will be 2/3 of the distance between the first and second given
points. Ratio values outside the range [0, 1] also make sense and are interpreted
in the obvious way—a ratio of−1 would put the point on the opposite side from
the second point of the first, and with a distance equal to the distance between
the given points.

[P] = .v.avv([A], [P], [P]); A new point is made that makes an angle with the
other two points equal to the given angle. The angle is measured in a counter-
clockwise direction.

[P] = .v.ccenter([C]); The new point is at the center of the given circle.

[P] = .v.lvmirror([L], [P]); The mirror image of the point through the line is
generated.

[P] = .vonconic([CON], [FLOAT], [FLOAT]); The point is forced to remain on the
given conic section. The two floats are the current coordinates.

[P] = .v.vcinv([P], [C]); Inverts the given point through the circle.



82 CHAPTER 5. �ADVANCED FEATURES

[P] = .v.lconic([L], [CON], [INT2]); The point is at the intersection of the line
and the conic section. There are up to 2 possibilities, so [INT2] can be 1 or 2.

[P] = .v.vvvbisect([P], [P], [P]); The new point is on the angle bisector of the
angle formed by the other three points. It is on the inside of that angle.

[P] = .v.vx([P], [X]); The new point is the old one with the given transformation
applied.

[P] = .v.vtranslate([P], [F], [F]); Construct the new point by translating the
old one by the first flt in the x-direction and by the second in the y-direction.

[P] = .v.vscale([P], [F], [F]); The new point is the old point scaled by the first
flt in the x-direction and by the second in the y-direction.

[P] = .v.vrotate([P], [F]); Construct the new point by rotating the old one by flt
counter-clockwise about the origin. The angle represented by flt is dependent on
the angle mode: degrees or radians.

[P] = .v.lcvother([L], [C], [P]); The new point is at the intersection of the line
and the circle and is guaranteed to be different from the given point.

[P] = .v.ccvother([C], [C], [P]); The new point is at the intersection of the two
circles and is guaranteed to be different from the given point.

[P] = .v.vvvharmonic([P], [P], [P]); A new point is the harmonic conjugate of
the first three. If the first three points are called A, B, and C, the result, X ,
satisfies H(AC,BX).

[L] = .l.vv([P], [P]); The new line passes through the two given points.

[L] = .l.vlperp([P], [L]); A new line is constructed, passing through the given
point and perpendicular to the given line.

[L] = .l.vlpar([P], [L]); A new line that passes through the given point and is
parallel to the given line is constructed.

[L] = .l.vc([P], [C], [INT2]); A new line which passes through the point and is
tangent to the given circle is constructed. In general, there are two possibilities,
so [INT2] is 1 or 2.

[L] = .l.ccext([C], [C], [INT]); The new line is an exterior tangent to the two
given circles. [INT2] is 1 or 2, since there are two possibilities.

[L] = .l.ccint([C], [C], [INT2]); The new line is an interior tangent to the two
given circles. [INT2] is 1 or 2, since there are two possibilities.

[L] = .l.conicv([CON], [P], [INT2]); Constructs a line tangent to the conic that
passes through the point. There are 2 possibilities, so [INT2] must be 1 or 2.

[L] = .l.vvperp([P], [P]); This line is the perpendicular bisector of the segment
connecting the two points.



5.12. REFERENCE 83

[C] = .c.vv([P], [P]); The new circle is constrained to have its center at the first
point, and to pass through the second.

[C] = .c.vvv([P], [P], [P]); A new circle that passes through all three points is
constructed.

[C] = .c.lll([L], [L], [L], [INT4]); A circle that is tangent to all three lines is
constructed. There are, in general, 4 possibilities, so [INT4] is 1, 2, 3, or 4.
The usual circle—the one that sits inside the triangle determined by the three
lines—has [INT4] equal to 1.

[C] = .c.vf([P], [F]); The circle has a center at the point, and a radius equal to the
value of flt.

[C] = .c.ccinv([C], [C]); The new circle is the inverse of the first circle through
the second circle.

[C] = .c.lcinv([L], [C]); The new circle is the inverse of the line through the cir-
cle.

[C] = .c.vcrad([P], [C]); Constructs a circle centered at the point, and having the
same radius as the given circle. This emulates a compass for straight-edge and
compass constructions.

[BEZ] = .bez.vvvv([P], [P], [P], [P]); A new cubic Bézier curve is constructed
having the four points as control points.

[F] = .f.rpn([RPN]); An [RPN] list is a set of comma-separated tokens that are cho-
sen from among flt, angle, float, and stack commands. The stack commands are
listed above. The sequence is evaluated as if it were a PostScript program, and
the top number on the stack is the final value of flt. If there’s an error, flt is set to
something huge and no error is reported.

[F] = .f.vv([P], [P]); flt is set to the distance between the two points.

[F] = .f.area([POLY]); flt is set to the area of the polygon.

[F] = .f.vvvratio([P], [P], [P]); Calculates the ratios of the distances between
the first and second and second and third points.

[F] = .script([FLOAT], [FLOAT], [FLOAT]); Only one of these commands can ap-
pear in a file. The three floats are interpreted as the minimum value, maximum
value, and step size. If this command appears, when the Run Script button is
pressed, the value of flt is set to the minimum value, and is incremented by the
step size until it is larger than the maximum value. Then the script stops.

[F] = .f.vxcoord([P]); The x coordinate of point is assigned to flt.

[F] = .f.vycoord([P]); The y coordinate of point is assigned to flt.



84 CHAPTER 5. �ADVANCED FEATURES

[A] = .a.vvv([P], [P], [P]); The new angle has a vertex at the second of the three
points, and has as edges rays from the center to the other two points.

[A] = .a.f([F]); This makes an angle of size flt. The [F] can be interpreted as either
degrees or radians, depending on Geometer’s mode.

[ARC] = .arc.vvv([P], [P], [P]); This is similar to the angle command, but the
arc drawn is centered on the second point and has a radius such that it begins at
the first point. It ends on the line from the second to the third point, and goes in
a counter-clockwise direction.

[P] = .polygon([INT], [P], ..., [P]); The value of [INT] is the number of points
to follow – it must be between 3 and 10, inclusive.

[CON] = .conic.vvvvv([P], [P], [P], [P], [P]); Five points determine a conic
section passing through all of them.

[CON] = .conic.lllll([L], [L], [L], [L], [L]); Construct a conic section tan-
gent to all five lines.

[X] = .x.identity(); Makes the identity transformation.

[X] = .x.rotate([X], [F]); Add a rotation with xform to make a new one flt is the
rotation in degrees or radians, depending on the mode of geometer.

[X] = .x.scale([X], [F], [F]); Add a scale to the given xform. The two flts rep-
resent x- and y- scaling.

[X] = .x.translate([X], [F], [F]); Add a translation to the given xform. The
two flts represent x- and y- translation.

[X] = .x.xxf([X], [X], [F]); If the value of flt = 0, the first xform is used; other-
wise the other. This is a way to get a conditional transformation.

[X] = .x.f9([X], [F], ..., [F]); There are nine flt values that are used as entries
into a transformation matrix which is then multiplied by the given xform to make
a new one. The new transformation matrix is filled as follows, assuming the flt
values are numbered 0 to 8 as they appear above:




flt0 flt1 flt2
flt3 flt4 flt5
flt6 flt7 flt8


 .

.layercondition([F], [F], [F], [HEX]); If the value of the second flt lies between
the values of the first and third, set the layers to the value of the hex number. This
is generally used in scripts. Here’s an example that turns on layer 1 for the first
third of the script, layer 2 for the second third, and layer 3 for the final third:

f = .script(0, 1, .02); // steps of .02

.layercondition(0.0, f, .3333333, 0x1);

.layercondition(.3333333, f, .6666666, 0x2);

.layercondition(.6666666, f, 1.0, 0x4);



5.12. REFERENCE 85

Generally the first and third flt values are constants, but that’s not required.

.text("Any text you want."); Makes a line of text to be displayed at the bottom of
the screen. The order in which text lines appear dictates the order in which they
are displayed. In the current implementation, at most 8 lines are visible. Use the
text in combinations with layers for more information.

There are some special characters you can insert in the text. See the section on
text for more information on how to add characters like some of these: ∠, ∆, ∼=,
and XY Z.

// comment text ... Any line beginning with ”//” is ignored, but is saved and printed
in any output files generated.

[COLOR] = ([FLOAT], [FLOAT], [FLOAT]); [COLOR] can be replaced by any of the
valid color identifiers, usually .c8, .c9, ..., .c31, but it can be the default colors as
well. The command above sets the red, green, and blue components for the given
color identifier. For example to make .c18 have red, green, and blue components
of .1, .2, and .3, respectively, include the following command:

.c18 = (.1, .2, .3);

These definitions can be placed anywhere in the file, but they are only evaluated
once as the file is parsed. When the file is saved, they will be written out at
the top of the file. .c8 through .c15 have some interesting initial colors; .c16
through .c31 are initially white.

It’s a good idea to make the three values between 0.0 and 1.0.

[LAYER]; [LAYER] stands for any valid layer identifier, for example .l0, .l1, ..., .l31,
or .l0on, .l1on, ... , .l31on; These are default layers for the file and are treated
exactly as are the default colors.

.degreemode; or .radianmode; Sets the mode for printing and reading angles. Ge-
ometer is in degreemode by default;

.macro These are covered in Section 5.8.

5.12.3 The Text Editor

Geometer’s text editor is fairly brain-dead, but it will only be used to edit the tiny
Geometer files. It is a pretty standard cut-and-paste editor, but it lacks some nice
features like using a double click to select a word, or shift-select to extend a selection.

There are a few speed keys (most of which are based on Emacs) for those of us who
would prefer to avoid using the mouse, if possible. Here’s a list of those speed keys:

Ctrl-a Cursor to beginning of line
Ctrl-b Cursor left one character
Ctrl-c Copy selection



86 CHAPTER 5. �ADVANCED FEATURES

Ctrl-d Delete character ahead of cursor
Ctrl-e Cursor to end of line
Ctrl-f Find command
Ctrl-k Kill to end of line
Ctrl-n Cursor down a line (next line)
Ctrl-o Open up a line at the cursor
Ctrl-p Cursor up a line (previous line)
Ctrl-Q Quit (and don’t save changes)
Ctrl-s Save file
Ctrl-u Kill to beginning of line
Ctrl-v Paste command
Ctrl-w Cut command (for Emacs users)
Ctrl-x Cut command
Ctrl-y Paste command (for Emacs users)

The arrow keys work in the obvious way, Home and End move to the beginning and
end of the file, and the Backspace, Tab, and Delete keys work in the obvious way.

5.12.4 Secret Commands

Geometer has a couple of “secret” commands that are only available via the keyboard.
Here’s what they do:

Ctrl-l (This is the lower-case “L” key.) This command toggles the line width to be
wider than normal. If you so screen-saves to snag an image, the thicker lines can
be much easier to see.

→ (right arrow) Moves everything to the right a tiny bit. This actually changes the
coordinates of the points.

← (left arrow) Moves everything a bit left.

↑ (up arrow) Moves everything a bit up.

↓ (down arrow) Moves everything a bit down.

Page Up Increases the size of the figure (zooms in) by a factor of 1.01. The zooming
is relative to the center of the drawing area.

Page Down Zooms out by a factor of 1/1.01.

Ctrl-Page Up Rotates all geometry about the center of the drawing area by an angle
of 1 degree clockwise.

Ctrl-Page Down Rotates all geometry about the center of the drawing area by an angle
of 1 degree counter-clockwise.



5.12. REFERENCE 87

5.12.5 Startup Options

What follows is true, and you can modify Geometer’s startup options as described
below, but the easier way to do it is now to use the Set Options entry in the Edit pull-
down menu. It will fire up a little user interface to set all the options below.

When Geometer starts, it tries to read a file called .geometerrc in your home directory
(the directory in the environment variable HOME). If the HOME environment variable
is not set, Geometer will look in the current directory. Currently, there are a few default
values which can be set in that file – the command to invoke the editor, and the size of
the initial Geometer window.

Here is a sample version of .geometerrc that sets all:

size 800 700

displayfont TIMES

printcmd gsview32 /p %s

printbw

fontsize 18

fontstyle BOLD

indexmode

nonames

browser netscape.exe

texteditsize 12

notips

nomsginfo

This will start with a window for the geometry that’s 800 pixels wide and 700 high
in the second case. (Note that the width and height don’t include the menu on the
left (about 200 pixels) nor the pulldown on top (about 30 pixels). If you’re using
Geometer to make illustrations in Encapsulated PostScript, it’s a good idea to have
width and height equal, since the PostScript file only prints what’s between -1 and
1 in both dimensions, and a square window will show exactly that. Geometer will
attempt to run in color index mode (rather than RGB, or full color mode)—use this if
your computer has a fairly low-powered graphics card (for example one that can only
display 256 colors). If you’re not sure what kind of graphics you have, try it and if it
doesn’t work, take the line out of your startup options file. The colors will be a little
better in RGB mode. The nonames tells Geometer not to add names to points. This
can be toggled on and off through the menu entry Point Names or by typing Ctrl-t.
By default, the help system will use the internet explorer browser, but if you use some-
thing else, add a line like the last one to your file.

texteditsize 12 sets the size, in pixels, of the font used in the Geometer text editor.
By default, it is 14 pixels high. This example sets it to 12 pixels high.

Similarly, the print command will stuff the print file names into the
Geometer can draw text on the screen in a few fonts, including:

HELVETICA (default)

TIMES

COURIER



88 CHAPTER 5. �ADVANCED FEATURES

These are available in:

PLAIN (default)

BOLD

ITALIC

BOLDITALIC

If your printer can only print black and white, include the line printbw to get better
printing.

The notips line tells Geometer that you do not want to see the “Tip of the day” when
you start the program.

Finally, nomsginfo will cause Geometer not to display the help information as the
cursor moves over the buttons in the control area.



Chapter 6

Teacher’s Tutorial

This tutorial is for teachers (or bright students) wishing to use Geometer to construct
fancy diagrams of their own. Before reading this, you should already know generally
how to use Geometer—how to construct points, lines, et cetera, and how to manipulate
them using the graphical user interface (GUI).

A huge number of examples are, of course, available on the CD that comes with the
book. The difference is that there the programs come without explanation.

6.1 A Simple Construction: The Circumcircle

Let’s warm up with a simple construction—we’ll construct the circumcircle of an arbi-
trary triangle.

AA

BB

CC

C’C’

A’A’
OO

Figure 6.1: Construction of a Circumcircle
Teachers/Circumcircle.T [P]

89



90 CHAPTER 6. TEACHER’S TUTORIAL

The first thing to do is to get a (fairly) firm idea in your head about how you want the
finished Geometer diagram to behave. In this example, I’ve chosen to do it as a five
step process (see Figure 6.1):

1. Show the triangle alone with some text to describe the problem to be solved.

2. Construct the perpendicular bisectors of two of the sides first by finding the mid-
points of the sides, and then by constructing lines perpendicular to those sides at
their midpoints (two steps).

3. Identify the circumcenter as the point of intersection of those two perpendicular
bisectors.

4. Construct the circumcircle using the circumcenter as center and any of the ver-
tices of the triangle as a point on the circle.

If you’re not doing it already, run Geometer on your computer and follow along as we
construct this example.

Here is how I would do it in detail.

1. In the first few steps, we’ll construct as much of the diagram as possible using
the standard GUI tools. Beginning with an empty file, make three points (that
will automatically be labeled A, B, and C). Connect those point to make the
original triangle. This is what will be displayed (together with some text) when
the diagram is opened.

2. Next, use the command PP=>P Mid to find the midpoints of the segments AB
and BC. Geometer will label these new points “D” and “E” which isn’t bad,
but I prefer names like C ′ and A′ for the midpoints opposite vertices A and C,
respectively. To change the names, click on the point, hold down the Ctrl-key,
and type n. A dialog box will appear with the name, and you can edit them to the
new names C ′ and A′. Press the OK button to complete the edits.

3. To find the perpendicular bisectors of AB and BC, use the PL=>L Perp com-
mand. The first thing you notice is that these lines probably don’t look right—
they are ray-like. That’s because you are in the mode of making line segments,
and you would like to make lines instead. (We make lines that are infinite in
both directions for the perpendicular bisectors since they may meet outside the
triangle—for medians or angle bisectors we would probably handle the situation
differently.) Anyway, click on each of those lines to select them and then select
Line under the Line Type button in the GUI.

4. Next find the circumcenter using the command LL=>P button and clicking on
the two altitudes. If you’re following along exactly, Geometer probably labeled
it F , and you may want to change its name to O as you did in step 2 by selecting
it and typing Ctrl-n.



6.1. A SIMPLE CONSTRUCTION: THE CIRCUMCIRCLE 91

5. Finally, using the Ctr Edg=>C command, make a circle centered at O and pass-
ing through point A. This completes the construction, so you may want to
move points A, B, and C to check your work, and to save the file (perhaps
as circumcircle.T).

6. By far the easiest way to proceed is with the text editor, so when you’re happy
with your diagram, under the pull-down menu Edit issue the Edit Geometry com-
mand. An editor window will appear with text that looks roughly like this (the
coordinates will obviously be different since you clicked in different places on
your screen than I did when you were placing points A, B, and C):

.geometry "version 0.31";

v1 = .free(-0.407186, 0.0209581, "A");

v2 = .free(0.239521, 0.598802, "B");

v3 = .free(0.502994, -0.161677, "C");

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

l3 = .l.vv(v3, v1);

v4 = .v.vvmid(v1, v2, "C’");

v5 = .v.vvmid(v2, v3, "A’");

l4 = .l.vlperp(v4, l1, .longline);

l5 = .l.vlperp(v5, l2, .longline);

v6 = .v.ll(l4, l5, "O");

c1 = .c.vv(v6, v1);

Most of what appears above is pretty obvious: v1, v2, and v3 are the points
labeled A, B, and C, l1 is the line connecting v1 and v2 (or, in other words, the
line AB), and similarly for lines l2 and l3.

Look at the rest of the entries to make sure you understand how they correspond
to the items in your drawing. They appear in exactly the same order you issued
the GUI commands, and if you have any doubt, the reference section in the
advanced tutorial section in Section 5.12.2 explains the syntax and semantics
precisely.

7. OK, let’s begin with a single change. (When you get good at this, you’ll make
a whole bunch of changes at once, but for now, let’s just make one minor edit
to see how it works.) Be very careful to follow instructions exactly so that you
don’t get an error. We’ll talk about how to deal with errors later (see step 11).
Let’s make the point v4 so that it changes colors as you step through the construc-
tion. We would like to have it invisible at first, to appear in a blinking color next,
and then to change to blue for the rest of the construction. To do this, modify the
line:

v4 = .v.vvmid(v1, v2, "C’");

to become:

v4 = .v.vvmid(v1, v2, "C’", [.in, .blink, .blue]);



92 CHAPTER 6. TEACHER’S TUTORIAL

The information between the square brackets is the color information. The .in

says that on layer 0, the color is invisible. Then the .blink says to paint this
point in a blinking color on layer 1, and the final .blue says that from layer 2
on, the object should always be painted in blue. Remember the comma after the
text: "C’".

After you make this edit, save the file using the Save command under the File
pull-down menu in the text editor window. If you did make a typing error, type
the OK button on the alert menu and you will be put back in the text editor with
the line containing the error highlighted. If you made no error, you should be
back to the GUI form of Geometer, but the point C ′ will be invisible.

8. Test your change. Do this by clicking on the Start button under Layer Control
to show only layer 0, and then click on the Next button just below it to go to
layer 1. If you’ve done everything right, the point C ′ will appear and will be
blinking. Press Next again, and C ′ should change to blue. Repeated presses of
Next should have no effect—it will remain blue for the rest of the layers.

Notice that all the rest of your diagram is visible in all steps. That’s because by
default, all items are created to appear on all layers.

9. Next, let’s make the diagram so that when it is loaded, only layer 0 will be
shown so the user will not have to press the Start button to get going. Issue the
Edit Geometry command again (under the Edit pulldown menu, or simply by
typing Ctrl-e), and add a final line to the file that looks like this:

.l0;

(That’s “ell-zero”, not “ell-oh”). It tells Geometer to begin displaying this dia-
gram displaying only layer zero.

Save your changes (use Save under the Edit pulldown, or simply by typing
Ctrl-s), and note that the diagram appears with only the “0” layer lit under
Layer Control. If you like, you can press the Next button a few times to see that
it still has the desired behavior for the appearance of point C ′.

10. Bring up the text editor again with Edit Geometry, and before you do anything
else, take a close look at what you’ve got:

.geometry "version 0.31";

.l0;

v1 = .free(-0.407186, 0.0209581, "A");

v2 = .free(0.239521, 0.598802, "B");

v3 = .free(0.502994, -0.161677, "C");

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

l3 = .l.vv(v3, v1);

v4 = .v.vvmid(v1, v2, [.in, .blink, .blue], "C’");

v5 = .v.vvmid(v2, v3, "A’");

l4 = .l.vlperp(v4, l1, .longline);

l5 = .l.vlperp(v5, l2, .longline);

v6 = .v.ll(l4, l5, "O");

c1 = .c.vv(v6, v1);



6.1. A SIMPLE CONSTRUCTION: THE CIRCUMCIRCLE 93

Notice that Geometer has changed what you put in! The .l0; command has
been moved to the top of the file, and the layer information you typed in for
point C ′ has been moved to appear before the "C’".

The reason is that slight reorderings like this make no difference, and Geometer
doesn’t remember exactly what you typed in—it just remembers the effect you
want, so when it prints its version, that version may be slightly different from
what you typed. The layer command moved to a different line, but the vast
majority of other reorderings are within a single line.

11. OK, now let’s see how to deal with typing errors. Intentionally make an error by
typing an X at the end of the line that begins with l3 to make:

l3 = .l.vv(v3, v1);X

and save the file with Ctrl-S. Geometer will barf and will display an alert no-
tifier with the obscure message, “Line 9: Expected ’=’”. For now ignore the
message and press the OK button on the notifier and you will be returned to the
text editor with line 9 highlighted. Usually all that’s required is a quick glance to
see what’s wrong and to fix it, in this case by deleting the X you just typed. Go
ahead and delete the X and save the file again, and you should be back to where
you were.

Now edit the file again, but add an X to the ends of two different lines and try
to save the file. You’ll get an error message, but only about the first error, and
only that line will be highlighted. Fix that error, try to save again, and you’ll be
pointed at the second bad line, et cetera. Geometer basically gives up as soon as
it hits the first error.

Note that sometimes the error is really on the previous line—Geometer may not
notice there’s anything wrong until it tries to interpret the next line.
With more experience, you can use the information in the error message as well.
The one above, “Line 9: Expected ’=’”, occurred because beginning with the X,
Geometer was expecting something like

X = .free(0, 0);

Geometer does not require the commands to be one per line; there can be mul-
tiple commands on a single line, or one command can stretch across many input
lines.

12. Now that we’re comfortable with errors let’s continue to fix up our diagram.
Bring up the editor and make all of the changes shown below. The first listing
is the current state of your file; below it is the target version. The last 5 lines all
require modification. Don’t necessarily make all the changes at once; edit a line
or two, save the file to see if there are errors, fix those errors if necessary, and
then edit the file again to continue with the changes.

.geometry "version 0.31";

.l0;



94 CHAPTER 6. TEACHER’S TUTORIAL

v1 = .free(-0.407186, 0.0209581, "A");

v2 = .free(0.239521, 0.598802, "B");

v3 = .free(0.502994, -0.161677, "C");

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

l3 = .l.vv(v3, v1);

v4 = .v.vvmid(v1, v2, [.in, .blink, .blue], "C’");

v5 = .v.vvmid(v2, v3, "A’");

l4 = .l.vlperp(v4, l1, .longline);

l5 = .l.vlperp(v5, l2, .longline);

v6 = .v.ll(l4, l5, "O");

c1 = .c.vv(v6, v1);

.geometry "version 0.31";

.l0;

v1 = .free(-0.407186, 0.0209581, "A");

v2 = .free(0.239521, 0.598802, "B");

v3 = .free(0.502994, -0.161677, "C");

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

l3 = .l.vv(v3, v1);

v4 = .v.vvmid(v1, v2, [.in, .blink, .blue], "C’");

v5 = .v.vvmid(v2, v3, [.in, .blink, .blue], "A’");

l4 = .l.vlperp(v4, l1, [2 .in, .blink, .blue], .longline);

l5 = .l.vlperp(v5, l2, [2 .in, .blink, .blue], .longline);

v6 = .v.ll(l4, l5, [3 .in, .blink, .blue], "O");

c1 = .c.vv(v6, v1, [4 .in, .blink, .white]);

After you have completed the edits above, test your diagram by pressing the Next
button to see that it behaves correctly—on layer 0, only the triangle appears. On
layer 1, the two midpoints, A′ and C ′ appear blinking. On layer 2, the perpen-
dicular bisectors appear blinking, and the midpoints change to blue. On layer
3, point O appears, blinking, and the perpendicular bisectors are blue. On layer
4, the required circle is blinking—all the other construction items are blue. On
layers 5 and beyond, the circle is white.
The only new thing that we’ve done is to add some multipliers in the color/layer
specifications. In the specification for point O, for example:

v6 = .v.ll(l4, l5, [3 .in, .blink, .blue], "O");

the 3 in front of the .in signifies that three invisible layers appear. This multiplier
could appear anywhere in the specification, and you don’t need to use it on input.
For example, suppose you wanted some item to be red for the first three steps,
then invisible for 2, and finally to appear white for the rest of the layers, you
could type this color/layer specification that will work fine:

[.red, .red, .red, .in, .in, .white]

But after you save it, Geometer will print it as:

[3 .red, 2 .in, .white]

13. Now it’s time to add some text. Edit your geometry and add the lines to the end
of the file so that the final result looks something like this (again, you may wish
to make these edits a few at a time and test them by saving the file and using the
Next button in the control panel area of Geometer):



6.1. A SIMPLE CONSTRUCTION: THE CIRCUMCIRCLE 95

.geometry "version 0.31";

.l0;

v1 = .free(-0.437126, 0.0748503, "A");

v2 = .free(0.239521, 0.598802, "B");

v3 = .free(0.502994, -0.161677, "C");

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

l3 = .l.vv(v3, v1);

v4 = .v.vvmid(v1, v2, [.in, .blink, .blue], "C’");

v5 = .v.vvmid(v2, v3, [.in, .blink, .blue], "A’");

l4 = .l.vlperp(v4, l1, [2 .in, .blink, .blue], .longline);

l5 = .l.vlperp(v5, l2, [2 .in, .blink, .blue], .longline);

v6 = .v.ll(l4, l5, [3 .in, .blink, .blue], "O");

c1 = .c.vv(v6, v1, [.white, 3 .in, .blink, .white]);

.text("Given \triangleABC, construct its circumcircle.", .l0);

.text("Move points A, B, and C to see

what ’circumcircle’ means.", .yellow, .l0);

.text("Find the midpoints C’ and A’ of

segments AB and BC, respectively.", .l1);

.text("Construct a line through C’ perpendicular

to AB and a line through A’ perpendicular

to BC.", .l2);

.text("Let O be the intersection of those

perpendicular bisectors.", .l3);

.text("The circle centered at O that passes

through A is the required circumcircle.", .l4);

.text("Press ’Next’ to continue ...", .red, .tol3);

A lot of new ideas are used above—we’ll look at them command by command.
In the first line you typed:

.text("Given \triangleABC, construct its circumcircle.", .l0);

the text that appears between the double quotes will appear in the Geometer dia-
gram. Geometer understands certain combinations of letters, like “\triangle”,
above, to represent a special symbol, in this case, the triangle symbol: 4. The
line will appear in Geometer as:

Given4ABC, construct its circumcircle.

The line will appear in the default color (white), and the final token on the line,
“.l0”, tells Geometer to display it only on layer 0. In this case, “.l0” is short-
hand for: “[.white, .in]”.
The next two lines:

.text("Move points A, B, and C to see

what ’circumcircle’ means.", .yellow, .l0);

Display the two lines of text between the double quotes as two lines in Geome-
ter. The lines will also appear in layer 0 only, but this set will be in yellow. The
text will look like this on the screen (in yellow, of course):

Move points A, B, and C to see
what ’circumcircle’ means.



96 CHAPTER 6. TEACHER’S TUTORIAL

Notice that the line breaks on the screen appear wherever newlines were typed
in the .text command.

Not much new appears in the next four commands, except that the text is pre-
sented on different layers: .l1 for layer 1, et cetera.
Finally, the last line:

.text("Press ’Next’ to continue ...", .red, .tol3);

is drawn in red, and the layer control “.tol3” means that it appears from layer
0 to layer 3—in other words, on four layers. It could have been done with: [4

.red, .in].

Geometer always interprets a file in order, so if there are multiple lines of text
that appear on the visible layer, they will be drawn as they appear in the file. In
the example above, there are three .text commands that display something on
layer 0, so the layer 0 text will look like this on the Geometer screen:

Given4ABC, construct its circumcircle.
Move points A, B, and C to see
what ’circumcircle’ means.
Press ’Next’ to continue ...

The first line will be drawn in white, the next two in yellow, and the final line in
red.

There, you’ve finished with the first example! One final thing worth noting is that
although the demonstration “officially” ends on the fifth layer (layer 4), if you step on
to layer 5, you get a non-blinking version of everything that is suitable for printing.
In addition, the printing version has no text (although it could, if you wanted to, but
usually the text in your document will be sufficient). Figure 6.1 is what you get if you
“print” the figure that appears on layer 5.

6.2 A Simple Proof: Equal Sides =⇒ Equal Angles

In this section, we’ll construct a Geometer diagram to prove that if two sides of a
triangle are equal, then the angles opposite those sides are also equal.

The first problem we face is how to construct the diagram so that the student will be
able to manipulate it in such a way that two of the lines will remain the same length. We
are trying to construct something like Figure XXX, where segments AB and AC are
always equal. There are various approaches, but for this example, I’ve chosen to make
points B and C completely free, but to constrain point A to lie on the perpendicular
bisector of the segment BC. See Figure 6.2

Here are the steps I followed; as before, I highly recommend that you follow along and
generate the same diagram in your own version of Geometer.



6.2. A SIMPLE PROOF: EQUAL SIDES =⇒ EQUAL ANGLES 97

BB CCDD

AA

Figure 6.2: Equal Sides Have Equal Angles Opposite Them
Teachers/Sidesangles.T [P]

1. We know that as you create points, Geometer names the first one “A”, the second
one “B”, et cetera. Being too lazy to change the names of points, I created three
free points, A, B, and C, and then deleted point A. To delete a point, select it
by clicking on it, and then type Ctrl-d, or choose the Delete command from the
Edit pull-down menu.

In fact, the fastest approach is this: Hold the Ctrl button down while you click on
Free P so that you can create a bunch of points, click once to make the point A,
and immediately type Ctrl-d to delete it, then click twice more to make points
labeled B and C. Finally, click Cancel Repeat Mode to get out of the repeat
creation mode.

2. Next, construct the segment BC (using PP=>L) that will be one edge of the
triangle, and find the midpoint of it using PP=>P Mid. This midpoint will be
labeled D, which is what we want. Now, using PL=>L Perp make the perpen-
dicular bisector of the segment BC passing through D∗. Finally we are in a
position to add point A using P on L and clicking on the perpendicular bisector
you just constructed. Geometer will label this new point “E”, so type Ctrl-n

to edit its name to “A”. Finally, click on the perpendicular bisector to select it,
and change its color to “invisible” using the Color button in the control area of
Geometer. Complete the triangle by constructing segments AB and AC.

Test your diagram (and save it to disk if you like) by moving points A, B, and
C. B and C should move completely freely, but point A should be constrained
to lie on the perpendicular bisector ofBC (and hence the lengths ofAB andAC
will remain equal, as we desired).

∗Geometer provides another command, PP=>L Perp Bis, that constructs the perpendicular bisector of
a segment directly without requiring the midpoint. This command (available only in the pull-down menu)
could be used, but there’s no real advantage, since we are going to need the point D later anyway.



98 CHAPTER 6. TEACHER’S TUTORIAL

To complete the proof, we are going to need line segment AD, so draw that now
as well.

3. Now we have all the basic lines that we’ll need, but we need to fix up the layer
colors, add text, and add a few more interesting touches.

Let’s begin by marking the lines and angles that are supposed to be congruent so
that the student can see more clearly what’s going on. Select line segment AB
and use the cascaded pull-down Style menu to set that line to 1 Slash. Do the
same thing for segmentAC. Both will now be drawn with a single slash through
them.

We also want to show that the base angles, ∠ACB and∠ABC are equal, so first
use the Angle Type button in the control panel to set the default angle type to
1 Slash. Now use the PPP=>A command in the control panel to make two angles
above. Click on the points in the order they appear in the angle description; for
example, to draw ∠ACB, click on point A, then C, and finally, B. In certain
cases, the angles you get may be “inside-out”—in other words, the reflex angle is
drawn. If that happens, there’s a Flip Angle command under the Edit pull-down
menu that’s also available as the keyboard Ctrl-a command.

4. Now we have most of the geometry we need, so lets fix up the layer colors using
the text editor. When you issue the first Edit Geometry command, this is roughly
what you should have in the text editor:

.geometry "version 0.31";

v2 = .free(-0.254936, -0.168969, "B");

v3 = .free(0.429834, -0.171934, "C");

l1 = .l.vv(v2, v3);

v1 = .v.vvmid(v2, v3, "D");

l2 = .l.vlperp(v1, l1, .in);

v4 = .vonl(l2, 0.090513, 0.537185, "A");

l3 = .l.vv(v4, v2, .line1slash);

l4 = .l.vv(v4, v3, .line1slash);

l5 = .l.vv(v4, v1);

ang1 = .a.vvv(v4, v3, v2, .slash1);

ang2 = .a.vvv(v3, v2, v4, .slash1);

Convert it to what follows by adding the layer color information to four of the
lines, and by adding the .text entries:

.geometry "version 0.31";

.l0;

v2 = .free(-0.254936, -0.168969, "B");

v3 = .free(0.429834, -0.171934, "C");

l1 = .l.vv(v2, v3);

v1 = .v.vvmid(v2, v3, [.in, .blink, .blue], "D");

l2 = .l.vlperp(v1, l1, .in);

v4 = .vonl(l2, 0.090513, 0.537185, "A");

l3 = .l.vv(v4, v2, .line1slash);

l4 = .l.vv(v4, v3, .line1slash);

l5 = .l.vv(v4, v1, [2 .in, .blink, .blue]);

ang1 = .a.vvv(v4, v3, v2, [.white, 3 .in, .blink, .white], .slash1);

ang2 = .a.vvv(v3, v2, v4, [.white, 3 .in, .blink, .white], .slash1);



6.2. A SIMPLE PROOF: EQUAL SIDES =⇒ EQUAL ANGLES 99

.text("Show that if AB \congruent AC in \triangleABC, then

\angleACB = \angleABC.", .l0);

.text("Move points A, B, and C.", .yellow, .l0);

.text("Let D be the midpoint of segment BC, so

BD \congruent CD.", .l1);

.text("Construct line AD which is congruent

to itself.", .l2);

.text("\triangleACD \congruent \triangleABD by SSS, since

AB \congruent AC, AD \congruent AD, and BD \congruent CD.", .l3);

.text("Since \triangleACD \congruent \triangleABD, we

have \angleACB \congruent \angleABC, which we

wanted to show.", .l4);

.text("Press ’Next’ to continue ...", .red, .tol3);

You now have a proof that is acceptable, but which can be vastly improved.

For example, it would be nice to have all the congruent segments marked as are
AB and AC, and it would be nice to somehow highlight the two triangles that
we showed to be congruent: 4ACD and4ABD.

The easiest way to do this is using the GUI of Geometer. We want the segments
BD and CD to be congruent, so just use the PP=>L command to add those
lines, but before you do that, issue the 2 Slash command under the Styles→Lines
cascading pull-down menu. The layer colors will be wrong, but we can fix those
later in the text editor.

Using Next, we can also get to a point where we can see the segmentAD, and put
three slashes on it with the 3 Slash command under the same cascading menu.
To fix the layer colors for the segments BD and CD, use the editor to convert:

l6 = .l.vv(v2, v1, .l1, .line2slash);

l7 = .l.vv(v3, v1, .l1, .line2slash);

to

l6 = .l.vv(v2, v1, [.in, .white], .line2slash);

l7 = .l.vv(v3, v1, [.in, .white], .line2slash);

Save these changes, and test the file again—it’s a little better, but we can improve
it just a little by having all three sets of congruent sides blinking in three different
blinking colors (.blink, .blink1, and .blink2) on layer 3, where we state that
the triangles are congruent by SSS. Those modifications, plus a couple of others
to make everything appear in white on the layer past the end yield a file that looks
something like this:

.geometry "version 0.31";

.l0;

v2 = .free(-0.254936, -0.168969, "B");

v3 = .free(0.429834, -0.171934, "C");

l1 = .l.vv(v2, v3);

v1 = .v.vvmid(v2, v3, [.in, .blink, 2 .blue, .white], "D");

l2 = .l.vlperp(v1, l1, .in);

v4 = .vonl(l2, 0.090513, 0.537185, "A");

l3 = .l.vv(v4, v2, [3 .white, .blink, .white], .line1slash);

l4 = .l.vv(v4, v3, [3 .white, .blink, .white], .line1slash);



100 CHAPTER 6. TEACHER’S TUTORIAL

l5 = .l.vv(v4, v1, [2 .in, .blink, .blink2, .white], .line3slash);

ang1 = .a.vvv(v4, v3, v2, [.white, 3 .in, .blink, .white], .slash1);

ang2 = .a.vvv(v3, v2, v4, [.white, 3 .in, .blink, .white], .slash1);

.text("Show that if AB \congruent AC in \triangleABC, then

\angleACB = \angleABC.", .l0);

.text("Move points A, B, and C.", .yellow, .l0);

.text("Let D be the midpoint of segment BC, so

BD \congruent CD.", .l1);

.text("Construct line AD which is congruent

to itself.", .l2);

.text("\triangleACD \congruent \triangleABD by SSS, since

AB \congruent AC, AD \congruent AD, and BD \congruent CD.", .l3);

.text("Since \triangleACD \congruent \triangleABD, we

have \angleACB \congruent \angleABC, which we

wanted to show.", .l4);

.text("Press ’Next’ to continue ...", .red, .tol3);

l6 = .l.vv(v2, v1, [.in, 2 .white, .blink1, .white], .line2slash);

l7 = .l.vv(v3, v1, [.in, 2 .white, .blink1, .white], .line2slash);

6.3 A Trapezoid has Perpendicular Diagonals

Next, we’ll construct a proof that the diagonals of a trapezoid are perpendicular. (A
trapezoid is a convex quadrilateral with four equal sides.)

The first problem is to draw a figure that the student can manipulate in such a way
that four points always form a trapezoid. The solution I selected has two completely
free points, A and B, and the third point C lies on a circle centered at B and passing
throughA. This will guarantee that AB ∼= BC. To do this construction, put down two
free pointsA andB, draw the circle centered at B and passing throughA, and then use
the P on C to make the point C lying on that circle. We don’t want the circle cluttering
up the diagram, so click on the circle to select it, and paint it the invisible color.

The locations ofA,B, andC completely determineD. Since we know that the theorem
is true, we can take advantage of it, and construct D. The easiest way I could think to
do it is to draw the line AC (which we will need later as part of the proof), and then to
reflect the pointB acrossAC to get the fourth pointD of the trapezoid. To do this, you
need the command LP=>P Mirror that can be found in the cascading pulldown menu
Primitives→Point.

Connect the four points AB, BC, CD, and DA with segments to form the trapezoid.
Now kick yourself, select the segments individually, and convert each to a segment with
a single slash through it with the cascading pull-down menu Styles→Line→1 Slash.
(Kick yourself because if you had selected this style before drawing the four lines, they
would all automatically have gotten the slash.)

Finally, draw in the two diagonals (but this time, remember to turn off the slash before
doing so with the menu entry Styles→Line→No Mark).

Test the diagram by moving points A, B, and C to make sure that D moves appropri-
ately, save the file, and now you’re ready to start building in the proof.
Use the editor to put in the first few lines that explain the theorem to prove, and remem-
ber to add the line .l0; to put Geometer into the proof mode when the file is loaded.



6.3. A TRAPEZOID HAS PERPENDICULAR DIAGONALS 101

In short, add these lines. (Note the use of the \congruent and \perp commands that
draw the congruence symbol (∼=), and the perpendicular symbol (⊥).

.l0;

.text("Prove that the diagonals of a trapezoid

are perpendicular. In other words, if

AB \congruent BC \congruent CD \congruent DA then AC \perp BD.

Move points A, B, and C.", .l0);

Next we show that various internal angles are equal (for example, ∠ACD ∼= ∠CAD)
since they lie opposite equal sides. To do this, make the angles appear at the appropriate
steps of the proof, and at the same time, it would be nice if the sides opposite them also
blinked, perhaps in a different color.
We continue to step through the proof, adding a line of text at a time, and then modify-
ing the layer colors of the various lines and angles so that things blink and stop blinking
at the correct times, and eventually, we get to the following fairly good proof:

.geometry "version 0.31";

.l0;

v1 = .free(-0.299401, 0.508982, "A");

v2 = .free(-0.38024, -0.11976, "B");

c1 = .c.vv(v2, v1, .in);

v3 = .vonc(c1, 0.22768, 0.0599201, "C");

l1 = .l.vv(v1, v3, [3 .white, .blink2, .white]);

v6 = .v.lvmirror(l1, v2, "D");

l2 = .l.vv(v1, v2, [2 .white, .blink1, .blink, 3 .white,

.blink2, .white], .line1slash);

l3 = .l.vv(v2, v3, [2 .white, 2 .blink1, .white, .blink,

.white, .blink2, .white], .line1slash);

l4 = .l.vv(v3, v6, [.white, .blink1, .white, .blink1,

.white], .line1slash);

l5 = .l.vv(v6, v1, [.white, .blink1, .white, .blink,

.white, .blink, .white], .line1slash);

l6 = .l.vv(v2, v6);

v7 = .v.ll(l1, l6, .l7on, "O");

.text("Prove that the diagonals of a trapezoid

are perpendicular. In other words, if

AB \congruent BC \congruent CD \congruent DA then AC \perp BD.

Move points A, B, and C.", .l0);

.text("In \triangleACD, AD \congruent CD, so

\angle CAD \congruent \angle ACD.", .l1);

ang1 = .a.vvv(v7, v1, v6, [.in, .blink, 2 .white,

.blink, .white], .slash1);

ang2 = .a.vvv(v6, v3, v1, [.in, .blink, 2 .white, .blink,

.white], .slash1);

.text("Similarly, n \triangleACB, AB \congruent CB, so

\angle CAB \congruent \angle BCA.", .l2);

ang3 = .a.vvv(v2, v1, v7, [2 .in, .blink, .white, .in], .slash2);

ang4 = .a.vvv(v1, v3, v2, [2 .in, .blink, .white, .in], .slash2);

.text("But AD \congruent AB, CD \congruent CB, and AC

is congruent to itself, so \triangleBAC \congruent \triangleDAC.", .l3);

.text("Since \triangleBAC \congruent \triangleDAC, we have

\angleDAC \congruent \angleDCA \congruent \angleBAC \congruent \angleBCA.",

.l4);

ang5 = .a.vvv(v1, v3, v2, [4 .in, .blink, 2 .white, .blink,

.white], .slash1);



102 CHAPTER 6. TEACHER’S TUTORIAL

ang6 = .a.vvv(v2, v1, v3, [4 .in, .blink, 2 .white, .blink,

.white], .slash1);

.text("Since \angleBCA \congruent \angleDAC, lines AD and BC are

parallel, so the transversal BD makes \angleADB \congruent CBD.",

.l5); ang7 = .a.vvv(v1, v6, v2, [5 .in, 2 .blink1, .white],

.ring2); ang8 = .a.vvv(v3, v2, v6, [5 .in, 3 .blink1, .white],

.ring2); .text("But since AB \congruent AD in \triangle ABD we

have \angle DBA \congruent ADB \congruent \angleCBD.", .l6); ang9

= .a.vvv(v6, v2, v1, [6 .in, 2 .blink1, .white], .ring2);

.text("Let O be the intersection of AC and DB. Then since AB

\congruent BC, \angleOBA \congruent \angleOBC, and \angleBAO

\congruent \angleBCO, \triangleAOB \congruent \triangleCOB.",

.l7);

.text("Since \triangleAOB \congruent \triangleCOB,

\angleBOA \congruent \angleBOC, but since those

are supplementary angles,

\angleBOA = \angle BOC = 90\degrees.", .l8);

ang10 = .a.vvv(v1, v7, v2, [8 .in, .blink, .white], .right);

ang11 = .a.vvv(v2, v7, v3, [8 .in, .blink, .white], .right);

.text("Press ’Next’ to continue ...", .red, .tol7);

AA

BB

CC

DD

OO

Figure 6.3: Perpendicular Diagonals of a Trapezoid
Teachers/Trapezoid.T [P]

Try loading a copy of this proof from the file Trapezoid.T and step through it as you
read the following comments about what goes on for each layer setting.

The code above was not modified to its current condition in one pass. I stepped to each
stage of the proof, figured out what colors I wanted to change, and then went in with
the editor and changed the layer colors on those items for that step only. Then I tested
the entire diagram again. It took about an hour to get it to its current state, starting from
scratch.

Layer 0: This is a standard starting configuration; the statement of the theorem appears,
the diagram shows the initial conditions (in this case, equal-length lines), there
are instructions about how to manipulate the figure to test the theorem, and there
is an indication that there is more to follow “Press ’Next’ to continue ...”.



6.4. INTERSECTION OF THREE CIRCLES 103

Layer 1: Two angles are proven equal since they lie opposite equal sides. The equal sides
are highlighted in one blinking color and the angles that must also be equal ap-
pear in the diagram for the first time in a different blinking color.

Layer 2: Next, we repeat the same argument for a different pair of sides and angles. The
same highlighting technique is used, but since all we know at this point is that
the second pair of angles are equal to each other (and not necessarily to the first
pair of angles), we display the new angles with a double arc.

Layer 3: The corresponding sides of the triangles that are proven congruent are displayed
in three different blinking colors. Each corresponding pair is shown in a different
color.

Layer 4: Now we know that the four angles mentioned above are all equal because of the
congruence of the two triangles in the previous step, so they can be displayed
with the same angle markings. To do this, the angles ∠BAC and ∠BCA are
actually included in the diagram twice—once with a single arc, and once with
a double arc. The double arc version is displayed for the first few steps of the
proof while the single arc version is invisible. Once we know they are equal, the
double arc version is invisible and the single arc version is shown.

Layer 5: The lines known to be parallel are shown in a blinking color, and the correspond-
ing equal angles cut by a transversal are shown in a different blinking color.

Layer 6: Another angle is shown to be equal to the equal angles made by the transversal
of the parallel lines, so all three equal angles are shown as blinking.

Layer 7: The angle, side, and angle used to prove the triangles are congruent by ASA are
shown in three different blinking colors.

Layer 8: This is the end of the official proof, and the angle between the diagonals of the
trapezoid is shown as a right angle, which is what we are trying to prove. Notice
that the “Press ’Next’ to continue ...” has disappeared.

Layer 9: There’s nothing interesting here for the student, but we can use layer 9 to print a
PostScript file for inclusion in documentation or whatever. The result on layer 9
is displayed in Figure 6.3.

6.4 Intersection of Three Circles

If points A′, B′, and C ′ are selected on the sides BC, CA, and AB of 4ABC, then
the three circles passing throughAB′C ′, throughBA′C ′, and throughCB′A′ all meet
at a point.
This is an easy construction to make using Geometer, and the code for the diagram
ThreeCircles.T is shown below:



104 CHAPTER 6. TEACHER’S TUTORIAL

AA

BB

CC

C’C’

A’A’

B’B’

OO

Figure 6.4: Intersection of Three Circles
Teachers/ThreeCircles.T [P]

.geometry "version 0.31";

.l0;

v1 = .free(-0.571856, 0.0598802, "A");

v2 = .free(0.571856, 0.595808, "B");

v3 = .free(0.41018, -0.556886, "C");

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

l3 = .l.vv(v3, v1);

v4 = .vonl(l1, 0.005177, 0.33027, "C’");

v5 = .vonl(l2, 0.48574, -0.0181719, "A’");

v6 = .vonl(l3, -0.0652644, -0.258284, "B’");

c1 = .c.vvv(v6, v5, v3);

c2 = .c.vvv(v5, v4, v2);

c3 = .c.vvv(v1, v4, v6, [.white, 3 .in, .magenta, .white]);

v7 = .v.cc(c1, c2, 2, [.in, .blink, .white], "O");

.text("Theorem: Given any \triangleABC, select

points A’, B’, and C’ on BC, CA, and AB,

respectively. The circles passing through

CB’A’, BA’C’, and AC’B’ all meet at a point.

Move points A, B, C, A’, B’, and C’.", .l0);

.text("Let O be the intersection different from

A’ of circles BA’C’ and CB’A’. Construct segments

OA’, OB’ and OC’.", .l1);

l4 = .l.vv(v7, v5, [.in, .blink, .white]);

l5 = .l.vv(v7, v6, [.in, .blink, .white]);

l6 = .l.vv(v7, v4, [.in, .blink, .white]);

.text("Since CA’OB’ and BA’OC’ are concyclic,

we have:", .l2);



6.5. A BINARY COUNTER 105

.text("(1) \angle A’OC’ + \angle C’BA’ = 180\degrees

(2) \angle B’OA’ + \angle A’CB’ = 180\degrees", [2 .in, .white, .yellow, .in]);

ang1 = .a.vvv(v5, v7, v4, [2 .in, .blink, .blink1, .white], .slash1);

ang2 = .a.vvv(v4, v2, v5, [2 .in, 2 .blink, .white], .slash2);

ang3 = .a.vvv(v6, v7, v5, [2 .in, 2 .blink1, .white], .dslash1);

ang4 = .a.vvv(v5, v3, v6, [2 .in, .blink1, .blink, .white], .dslash2);

ang5 = .a.vvv(v4, v7, v6, [3 .in, .blink1, .white]);

ang6 = .a.vvv(v3, v1, v2, [3 .in, .blink, .white], .ring2);

.text("(3) \angleC’BA’ + \angleA’CB’ + \angleB’AC’ = 180\degrees

(4) \angleA’OC’ + \angleB’OA’ + \angle C’OB’ = 360\degrees

Calculate (3)+(4)-(1)-(2) giving", .l3);

.text("Since", .l4);

.text("\angleC’OB’ + \angle B’AC’ = 180\degrees", .l3, .l4);

.text("We know that AC’OB’ are concyclic.", .l4);

.text("Press ’Next’ to continue ...", .red, .tol3);

Step through the proof in Geometer as you read the discussion about each layer below,
and refer to the text above to see how the various effects are achieved.

Layer 0: As usual, the initial layer simply shows the theorem, explains how to manipulate
the figure, and indicates with the “Press ’Next’ to continue ...” that there is more
to come.

Layer 1: Newly constructed lines and points appear in a blinking color.

Layer 2: Pairs of supplementary angles are shown in different blinking colors. Watch
what happens to equations (1) and (2) on the next layer, and look at the code to
see how this was done.

Layer 3: Sets of angles that add to 180◦ (since they are the angles of a triangle) and angles
that add to 360◦ are shown in different blinking colors.

Layer 4: Again, check to see how the information from the top equation was carried over
from the previous layer.

Layer 5: Finally, the proof is long over, but this page can be used to make a PostScript
diagram like the one that appears in Figure 6.4.

6.5 A Binary Counter

This example provides a nice example of how the various layer colors work. The goal
is to illustrate a binary counter where the digit 0 is represented by the color red and
the digit 1 by the color green. As you step through the “proof”, one layer at a time is
shown, and the colors of four different squares will display the binary value for that
number as a combination of red and green squares.
You can make the squares (or whatever other shapes you may like) using Geometer’s
GUI, or, as I did in this example, you can simply type in the exact coordinates that
you like so that the objects are uniform and uniformly spaced. Here is the code for the
binary counter:



106 CHAPTER 6. TEACHER’S TUTORIAL

.geometry "version

0.31"; .l0; v1a = .pinned(0.5, -0.1, .in); v1b = .pinned(0.5, 0.1,

.in); v1c = .pinned(0.7, 0.1, .in); v1d = .pinned(0.7, -0.1, .in);

v2a = .pinned(0.2, -0.1, .in); v2b = .pinned(0.2, 0.1, .in); v2c =

.pinned(0.4, 0.1, .in); v2d = .pinned(0.4, -0.1, .in); v4a =

.pinned(-0.1, -0.1, .in); v4b = .pinned(-0.1, 0.1, .in); v4c =

.pinned(0.1, 0.1, .in); v4d = .pinned(0.1, -0.1, .in); v8a =

.pinned(-0.4, -0.1, .in); v8b = .pinned(-0.4, 0.1, .in); v8c =

.pinned(-0.2, 0.1, .in); v8d = .pinned(-0.2, -0.1, .in); p1 =

.polygon(4, v1a, v1b, v1c, v1d, [.red, .green, .red, .green,

.red, .green, .red, .green, .red, .green, .red, .green,

.red, .green, .red, .green], .solidpoly);

p2 = .polygon(4, v2a, v2b, v2c, v2d, [2 .red, 2 .green, 2 .red,

2 .green, 2 .red, 2 .green, 2 .red, .green], .solidpoly);

p4 = .polygon(4, v4a, v4b, v4c, v4d, [4 .red, 4 .green, 4 .red,

.green], .solidpoly);

p8 = .polygon(4, v8a, v8b, v8c, v8d, [8 .red, .green], .solidpoly);

The four polygons, p1, p2, p4, and p8, represent the four binary digits. The one’s digit
alternates red and green on every step; the two’s digit alternates every two steps, et
cetera.

6.6 An Improved Binary Counter

The code below improves on the counter above. Instead of using red and green to
represent the digits, we actually draw out a zero and a one. The zero is made with an
ellipse, and the one with a line segment. To draw the zero, I played around with the
five points until I had a shape I liked; then I pinned the points by converting the .free

to .pinned in the editor. To get exact copies of my ellipses, I simply translated the
original points to the right to make additional copies.

Then I used the same alternation of colors in the layer color commands, but made sure
that when the zero was showing, the one was not, and vice-versa.
Here’s the code:

.geometry "version 0.31";

.l0;

va = .pinned(0, 0.01, .in);

vb = .pinned(0.05, 0, .in);

vc = .pinned(0.026, 0.2, .in);

vd = .pinned(0.025, -0.2, .in);

ve = .pinned(0.0479042, -0.0898204, .in);

wa = .pinned(0.025, 0.2, .in);

wb = .pinned(0.025, -0.2, .in);

va1 = .v.vtranslate(va, 0.100000, 0.000000, .in);

vb1 = .v.vtranslate(vb, 0.100000, 0.000000, .in);

vc1 = .v.vtranslate(vc, 0.100000, 0.000000, .in);

vd1 = .v.vtranslate(vd, 0.100000, 0.000000, .in);

ve1 = .v.vtranslate(ve, 0.100000, 0.000000, .in);

wa1 = .v.vtranslate(wa, 0.100000, 0.000000, .in);

wb1 = .v.vtranslate(wb, 0.100000, 0.000000, .in);

va2 = .v.vtranslate(va, 0.200000, 0.000000, .in);



6.7. �PLOTTING CURVES 107

vb2 = .v.vtranslate(vb, 0.200000, 0.000000, .in);

vc2 = .v.vtranslate(vc, 0.200000, 0.000000, .in);

vd2 = .v.vtranslate(vd, 0.200000, 0.000000, .in);

ve2 = .v.vtranslate(ve, 0.200000, 0.000000, .in);

wa2 = .v.vtranslate(wa, 0.200000, 0.000000, .in);

wb2 = .v.vtranslate(wb, 0.200000, 0.000000, .in);

va3 = .v.vtranslate(va, 0.300000, 0.000000, .in);

vb3 = .v.vtranslate(vb, 0.300000, 0.000000, .in);

vc3 = .v.vtranslate(vc, 0.300000, 0.000000, .in);

vd3 = .v.vtranslate(vd, 0.300000, 0.000000, .in);

ve3 = .v.vtranslate(ve, 0.300000, 0.000000, .in);

wa3 = .v.vtranslate(wa, 0.300000, 0.000000, .in);

wb3 = .v.vtranslate(wb, 0.300000, 0.000000, .in);

zero1 = .conic.vvvvv(va3, vb3, vc3, vd3, ve3, [.white, .in,

.white, .in, .white, .in, .white, .in, .white, .in,

.white, .in, .white, .in, .white, .in]);

zero2 = .conic.vvvvv(va2, vb2, vc2, vd2, ve2, [2 .white,

2 .in, 2 .white, 2 .in, 2 .white, 2 .in, 2 .white, .in]);

zero4 = .conic.vvvvv(va1, vb1, vc1, vd1, ve1, [4 .white,

4 .in, 4 .white, .in]);

zero8 = .conic.vvvvv(va, vb, vc, vd, ve, [8 .white, .in]);

one1 = .l.vv(wa3, wb3, [.in, .white, .in, .white, .in, .white,

.in, .white, .in, .white, .in, .white, .in, .white,

.in, .white]);

one2 = .l.vv(wa2, wb2, [2 .in, 2 .white, 2 .in, 2 .white,

2 .in, 2 .white, 2 .in, .white]);

one4 = .l.vv(wa1, wb1, [4 .in, 4 .white, 4 .in, .white]);

one8 = .l.vv(wa, wb, [8 .in, .white]);

Figure 6.5: Layer 11 of the Binary Display Program
Teachers/Binary1.T [P]

Figure 6.5 shows the result that appears on layer number 11.

6.7 �Plotting Curves

You can (mis)use Geometer as a general graphing package, although it can be a bit
clumsy. A lot of the clumsiness comes from the fact that Geometer insists on a co-
ordinate system with (0, 0) in the center of the drawing area and that runs from −1.0



108 CHAPTER 6. TEACHER’S TUTORIAL

to 1.0 in the shorter screen direction. In what follows, we’ll assume that the Geome-
ter drawing area is square, so its coordinate system will run from −1.0 to 1.0 in both
directions.

Figure 6.6: Plot of f(x) = cos 5x+ sin 11x.
Teachers/Plot.T [S]

For this example, we’ll simply plot the function:

f(x) = cos 5x+ sin 11x.

Just eyeballing the function above, we can see that it must range in size between−2.0
and 2.0, so we’ll probably want to multiply the x and y values by a number slightly
smaller than 0.5 to make it fit. Thus, the input (x) values will also range from −2.0 to
2.0. In fact, if we make this input range a bit larger, the curve will run off both ends,
and will thus be guaranteed to fill as much of the screen as possible. (By the way, the
angles are measured in radians, or we wont see much!)
Once we’ve made those decisions, the code is pretty simple:



6.8. �PLOTTING PARAMETRIC CURVES 109

.geometry "version 0.31";

.radianmode;

x = .script(-2.100000, 2.100000, 0.010000);

y = .f.rpn(x, 5.000000, .mul, .cos, x,

11.000000, .mul, .sin, .add, 0.450000,

.mul);

x1 = .f.rpn(x, 0.450000, .mul);

v = .v.ff(x1, y, .smear, .dot);

The first line .radianmode; puts Geometer in radianmode; it measures angles in de-
grees by default.

The second line tells Geometer that the diagram is to be a script—that the Run Script
button should be active, and when pressed, Geometer will repeatedly evaluate the
entire program using values of x that run between −2.1 and 2.1 in steps of 0.01. If the
spacing of the dots is wrong, you can make them more or less dense by changing value
of 0.01 appropriately.

The third line does the calculation of the y-value: it takes x, multiplies it by 5 and takes
the cosine, then takes another copy of x and multiplies it by 11, takes the sine, and then
adds together the values. Finally, the result is multiplied by 0.45 (a number slightly
less than 0.5) to keep the plot in range. x1 is a similarly scaled value of x.

Finally, a point v is plotted with coordinates x1 and y. It is plotted in the smearing color
so that all the dots will appear on the screen. It is drawn as a single dot (using .dot as
point type) so as not to clutter the screen too much.

The final result can be seen in Figure 6.6.

6.8 �Plotting Parametric Curves

It is also easy to plot parametric curves in the same way, where both the x- and y-
coordinates are functions of a parameter t. Just let the .script command generate
values of t, calculate x and y values using .f.rpn, and plot away.

Functions in polar coordinates are slightly more interesting. In this case, the function
relates the angle θ with the radius, ρ. ρ or θ can usually be the parameter, and the other
variable is calculated in terms of it, but then the resulting values must be converted
to x- and y-coordinates so Geometer can deal with them. The conversion is simple,
however:

x = ρ cos θ

y = ρ sin θ.

As an example, let’s plot the function

ρ = 0.5 + (cos 10θ)/3.

The result can be seen in Figure 6.7.
Here’s the code to do it:



110 CHAPTER 6. TEACHER’S TUTORIAL

Figure 6.7: Plot of ρ = 0.5 + (cos 10θ)/3.
Teachers/Plot1.T [S]

.geometry "version 0.31";

.radianmode;

theta = .script(0.000000, 6.283100, 0.010000);

rho = .f.rpn(0.500000, theta, 10.000000, .mul, .cos,

3.000000, .div, .add);

x = .f.rpn(theta, .cos, rho, .mul);

y = .f.rpn(theta, .sin, rho, .mul);

v = .v.ff(x, y, .smear, .dot);

6.9 Ellipse Macro

An ellipse is commonly defined in terms of two foci F1 and F2 and a length, l. The
ellipse is the set of all points P such that F1P + F2P = l. Equivalently, it can be



6.9. ELLIPSE MACRO 111

defined in terms of the foci F1, F2, and a point P , and the point X is on the ellipse if
F1P + F2P = F1X + F2X . This second definition is better for Geometer diagrams
since Geometer allows you to manipulate points freely, and it’s a little messier to
manipulate a length. The conic sections that can be defined in Geometer, however,
only include those that pass through 5 points, or those that are tangent to 5 lines.

F1F1

F2F2

PP

f1f1

f2f2

pp

Figure 6.8: An Ellipse Macro
Teachers/Ellipse.T [P]

In this section we’ll construct a macro that takes the two foci and a point on the bound-
ary as input and draws the ellipse. In Figure 6.8 is a demonstration of two calls to the
macro, one with focus points at F1, F2, and passing through point P , and the other
with foci f1, f2, and passing through p.

Here is the Geometer code to generate Figure 6.8:

.geometry "version 0.32";

v1 = .free(-0.0299401, 0.479042, "F\sub{1}");

v2 = .free(0.389222, 0.317365, "F\sub{2}");

v3 = .free(0.203593, 0.0508982, "P");

v4 = .free(-0.233533, -0.505988, "f\sub{1}");

v5 = .free(0.673653, -0.41018, "f\sub{2}");

v6 = .free(0.718563, -0.473054, "p");

.macro conic(.vertex f1, .vertex f2, .vertex p)

{

d1 = .f.vv(f1, p);

d2 = .f.vv(f2, p);

sum = .f.rpn(d1, d2, .add);

r1 = .f.rpn(sum, 0.550000, .mul);

r2 = .f.rpn(sum, 0.450000, .mul);

c1 = .c.vf(f1, r1, .in);

c2 = .c.vf(f2, r1, .in);

c3 = .c.vf(f1, r2, .in);

c4 = .c.vf(f2, r2, .in);

v4 = .v.cc(c2, c3, 1, .in, "D");

v5 = .v.cc(c1, c4, 2, .in, "E");



112 CHAPTER 6. TEACHER’S TUTORIAL

v6 = .v.cc(c1, c4, 1, .in, "F");

v7 = .v.cc(c2, c3, 2, .in, "G");

con1 = .conic.vvvvv(p, v7, v6, v5, v4);

}

conic(v1, v2, v3);

conic(v4, v5, v6);

The code is fairly straight-forward—it takes the sample points, calculates the length
(called sum), and then draws a pair of circles around the points of lengths .45 and .55 of
the total length. The intersections of these circles will be points on the ellipse as well
as the original point. The ellipse is the conic that passes through the original point and
through the four circle intersections.

6.10 ��Angle Subdivision

This example isn’t particularly useful but it does make use of a bunch of new diagram
construction techniques, especially the use of the arithmetic operations available for
floating point numbers as well as some other tricks.

The diagram will consist of a fixed line marked from 2 to 11 at the top of the screen,
and an angle ∠ABC below whose size can be modified. The user can drag a point
along the line at the top of the screen and it’s position will represent an integer n from
2 to 11. The angle below is divided into two n equal parts. In other words, if n = 2,
the angle is bisected; if n = 3, it is trisected, and so on. Figure 6.9 shows the diagram
when the slider is in the region corresponding to n = 7. The angle ∠ABC is divided
into seven equal parts.
The code to do this was basically all typed in by hand. For the discussion below, it is
broken into various chunks, but in the Geometer file it all appears together.

.geometry "version 0.31";

v1 = .v.ff(-1.000000, 0.800000, .in);

v2 = .v.ff(1.000000, 0.800000, .in);

l1 = .l.vv(v1, v2, .longline);

vp2 = .pinned(-0.9, 0.8, .nomark, "2");

vp3 = .pinned(-0.7, 0.8, .nomark, "3");

vp4 = .pinned(-0.5, 0.8, .nomark, "4");

vp5 = .pinned(-0.3, 0.8, .nomark, "5");

vp6 = .pinned(-0.1, 0.8, .nomark, "6");

vp7 = .pinned(0.1, 0.8, .nomark, "7");

vp8 = .pinned(0.3, 0.8, .nomark, "8");

vp9 = .pinned(0.5, 0.8, .nomark, "9");

vp10 = .pinned(0.7, 0.8, .nomark, "10");

vp11 = .pinned(0.9, 0.8, .nomark, "11");

vm1 = .pinned(-0.8, 0.8, .plus);

vm2 = .pinned(-0.6, 0.8, .plus);

vm3 = .pinned(-0.4, 0.8, .plus);

vm4 = .pinned(-0.2, 0.8, .plus);

vm5 = .pinned(0, 0.8, .plus);

vm6 = .pinned(0.2, 0.8, .plus);

vm7 = .pinned(0.4, 0.8, .plus);

vm8 = .pinned(0.6, 0.8, .plus);



6.10. ��ANGLE SUBDIVISION 113

22 33 44 55 66 77 88 99 1010 1111

AA

BB

CC

Figure 6.9: Subdivision of an Angle
Teachers/Artificial.T [P]

vm9 = .pinned(0.8, 0.8, .plus);

tab = .vonl(l1, -0.140719, 0.8, .cyan);

All this first chunk of code does is to draw the rule at the top of the viewing area. The
coordinates for a square viewing area run from −1.0 to 1.0 in both directions, so the
rule runs all the way across the drawing area with a y-coordinate of 0.8. The vm1, vm2,
. . . points are marked with crosses so that they divide the rule into 11 roughly equally-
sized pieces and the vp2, vp3, . . . points show no mark, but they appear between the
other points and label the regions on the rule. Finally, the point called tab is stuck on
the rule and can slide back and forth on it.

Note that all the points are pinned. This is so you can’t inadvertently move them, but
so that they will show up in the drawing.

value = .f.vxcoord(tab);



114 CHAPTER 6. TEACHER’S TUTORIAL

count = .f.rpn(value, 1.000000, .add, 0.200000, .div,

2.000000, .add, .truncate);

The two lines above determine the value of n (which is called count in the code here).
The first line takes the x-coordinate of the point tab that can slide along the line and
stores it in a floating point number called value.

The next line converts value to a number between 2 and 11. We know that originally
value is between −1.0 and 1.0 so if we add 1.0 to it and divide that result by 0.2 we
will obtain a number between 0 and 10 (and it will, in fact be less than 10—something
like 9.999 is the maximum value it can have).

Add 2 to that and truncate to the nearest integer and we’ve got a number between (and
including) 2 and 11.

The .f.rpn line above does exactly the calculation described above. It puts value

on the stack, then it puts 1.0 on the stack and adds the two, leaving the single result
value+1 on the stack.

The next two entries, 0.200000 and .div, divide the number on the stack by 0.2. The
next two entries add 2 to the result, and the final .truncate command rounds down to
the nearest integer, so the result stored in count will be an integer between 2 and 11.

v3 = .free(0.55988, -0.571856, "A");

v4 = .free(-0.51497, -0.176647, "B");

v5 = .free(0.526946, 0.314371, "C");

l2 = .l.vv(v4, v3, .ray12);

l3 = .l.vv(v4, v5, .ray12);

ang = .a.vvv(v3, v4, v5);

The lines above were the only ones in this example that were entered using the GUI of
Geometer. They draw the angle that is to be subdivided in the middle of the screen.

m2 = .f.rpn(ang, count, .div);

This line takes the measure of angle ang, divides it by count, and stores the result in the
variable m2. The main angle has to be broken into a bunch of angles all having equal
measures m2.

The problem, of course, is that depending on the size of count a different number of
those angles need to be drawn. Geometer is not very good at conditional code, so what
can be done?

x1 = .f.rpn(m2, 1.000000, count, .mod, .mul);

x2 = .f.rpn(m2, 2.000000, count, .mod, .mul);

x3 = .f.rpn(m2, 3.000000, count, .mod, .mul);

x4 = .f.rpn(m2, 4.000000, count, .mod, .mul);

x5 = .f.rpn(m2, 5.000000, count, .mod, .mul);

x6 = .f.rpn(m2, 6.000000, count, .mod, .mul);

x7 = .f.rpn(m2, 7.000000, count, .mod, .mul);

x8 = .f.rpn(m2, 8.000000, count, .mod, .mul);

x9 = .f.rpn(m2, 9.000000, count, .mod, .mul);

x10 = .f.rpn(m2, 10.000000, count, .mod, .mul);



6.10. ��ANGLE SUBDIVISION 115

OK, here’s the dirty trick—we’re going to draw 11 dividing lines, no matter what the
angle is. It’s just that for small values of count, lots of them will be drawn on top of
each other.

Basically, to find the angle size, we take m2 and multiply it by ten values: 1 (mod
count), 2 (mod count), . . . , 10 (mod count). Consider the situation where count= 4
to see what’s going on:

0 = 4(mod4) = 8(mod4)

1 = 1(mod4) = 5(mod4) = 9(mod4)

2 = 2(mod4) = 6(mod4) = 10(mod4)

3 = 3(mod4) = 7(mod4),

so ten lines are drawn, but two of them are drawn 3 times and two of them are drawn
twice.

But now we have the angles, so all that remains is to draw them. The following straight-
forward code does the trick. It could probably be made shorter with a macro, but it was
pretty simple just to get one set of three lines working correctly, and then to make nine
more copies which were modified in the obvious way:

ang1 = .a.f(x1);

vsplit1 = .v.avv(ang1, v3, v4, .in);

lsplit = .l.vv(v4, vsplit1, .ray12);

ang2 = .a.f(x2);

vsplit2 = .v.avv(ang2, v3, v4, .in);

lsplit2 = .l.vv(v4, vsplit2, .ray12);

ang3 = .a.f(x3);

vsplit3 = .v.avv(ang3, v3, v4, .in);

lsplit3 = .l.vv(v4, vsplit3, .ray12);

ang4 = .a.f(x4);

vsplit4 = .v.avv(ang4, v3, v4, .in);

lsplit4 = .l.vv(v4, vsplit4, .ray12);

ang5 = .a.f(x5);

vsplit5 = .v.avv(ang5, v3, v4, .in);

lsplit5 = .l.vv(v4, vsplit5, .ray12);

ang6 = .a.f(x6);

vsplit6 = .v.avv(ang6, v3, v4, .in);

lsplit6 = .l.vv(v4, vsplit6, .ray12);

ang7 = .a.f(x7);

vsplit7 = .v.avv(ang7, v3, v4, .in);

lsplit7 = .l.vv(v4, vsplit7, .ray12);

ang8 = .a.f(x8);

vsplit8 = .v.avv(ang8, v3, v4, .in);

lsplit8 = .l.vv(v4, vsplit8, .ray12);

ang9 = .a.f(x9);

vsplit9 = .v.avv(ang9, v3, v4, .in);

lsplit9 = .l.vv(v4, vsplit9, .ray12);

ang10 = .a.f(x10);

vsplit10 = .v.avv(ang10, v3, v4, .in);

lsplit10 = .l.vv(v4, vsplit10, .ray12);

The 30 lines above can be replaced by the following 16 lines if you’re willing to use a
macro. Ten more of the earlier lines can also be moved into the macro if you wish—the
lines where x1, . . . , x10 were defined.



116 CHAPTER 6. TEACHER’S TUTORIAL

.macro newangle(.flt f)

{

ang1 = .a.f(f);

vsplit1 = .v.avv(ang1, v3, v4, .in);

lsplit1 = .l.vv(v4, vsplit1, .ray12);

}

newangle(x1);

newangle(x2);

newangle(x3);

newangle(x4);

newangle(x5);

newangle(x6);

newangle(x7);

newangle(x8);

newangle(x9);

newangle(x10);

6.11 Morley’s Theorem

AA

CC

BB

Figure 6.10: Morley’s Theorem
Teachers/Morley.D [D]

Morley’s Theorem (see Figure 6.10) states that if you examine the intersections of the
angle trisectors of any triangle, they will meet in pairs to form an equilateral triangle.
Here’s the actual Geometer code to draw the basic diagram for Morley’s Theorem.
The key parts are the three sets of five lines beginning with the .a.vvv commands. This
gets the angle from the three points. That angle is then divided by 3 (well, multiplied
by 1/3, and the resulting number is converted back to an angle. That new angle is
then used to construct two more points on the trisectors. There is some funny stuff to
make the picture pretty—a lot of the lines are invisible because they were used in the
construction, but in the nice illustration only parts of them are shown. Much of the
diagram below can be constructed by pointing and clicking, but you will need to type
in the three sections of code that generate the sets of trisectors.

.geometry "version 0.2";

v1 = .free(-0.874251, -0.760479, "A");

v2 = .free(0.0658683, 0.766467, "C");



6.12. DRAWING THE STEINER PORISM 117

v3 = .free(0.811377, -0.601796, "B");

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

l3 = .l.vv(v3, v1);

a = .a.vvv(v1, v2, v3, .noangle);

ll2 = .f.rpn(a, 0.333333, .mul);

a3 = .a.f(ll2);

vv1 = .v.avv(a3, v1, v2, .in);

ww1 = .v.avv(a3, vv1, v2, .in);

l4 = .l.vv(v2, ww1, .in, .ray12);

l5 = .l.vv(v2, vv1, .in, .ray12);

b = .a.vvv(v2, v3, v1, .noangle);

ll4 = .f.rpn(b, 0.333333, .mul);

b3 = .a.f(ll4);

vv2 = .v.avv(b3, v2, v3, .in);

ww2 = .v.avv(b3, vv2, v3, .in);

l6 = .l.vv(v3, ww2, .in, .ray12);

l7 = .l.vv(v3, vv2, .in, .ray12);

c = .a.vvv(v3, v1, v2, .noangle);

ll6 = .f.rpn(c, 0.333333, .mul);

c3 = .a.f(ll6);

vv3 = .v.avv(c3, v3, v1, .in);

ww3 = .v.avv(c3, vv3, v1, .in);

l8 = .l.vv(v1, ww3, .in, .ray12);

l9 = .l.vv(v1, vv3, .in, .ray12);

v4 = .v.ll(l8, l5, "Y");

v5 = .v.ll(l6, l9, "Z");

v6 = .v.ll(l7, l4, "X");

l10 = .l.vv(v1, v5, .red);

l11 = .l.vv(v1, v4, .red);

l12 = .l.vv(v4, v2, .red);

l13 = .l.vv(v2, v6, .red);

l14 = .l.vv(v6, v3, .red);

l15 = .l.vv(v3, v5, .red);

l16 = .l.vv(v5, v6, .yellow);

l17 = .l.vv(v6, v4, .yellow);

l18 = .l.vv(v4, v5, .yellow);

6.12 Drawing the Steiner Porism

How can Figure 6.11 be constructed using a computer geometry program?

Obviously, a set of equally-spaced circles that exactly fill the ring between two con-
centric circles was constructed, and the result was inverted to obtain a Steiner Porism
with a lopsided pair of enclosing rings. The inverted circles will exactly fill the space
between the lopsided rings.

It is not hard to work out the relative sizes of a pair of concentric circles that will allow
for some fixed number n of circles to fit between them. In Figure 6.12 we see what
we need to begin. In this case, there are nine circles, but let’s just call that number
n. The central angle between any pair of circle centers is 360◦/n, so vertex angle
∠AOB = 360◦ of the isosceles triangle in the figure.

If that figure, 4OMA is a right triangle where M is the point of tangency of two



118 CHAPTER 6. TEACHER’S TUTORIAL

C0C0

C1C1

C3C3 C4C4

K1K1

K0K0

CnCn
Cn-1Cn-1

Figure 6.11: The Steiner Porism
Teachers/Steiner.T [S]

33 3030nn

OO

AA

BB
MM

Figure 6.12: A Ball-Bearing Race
Teachers/Steiner1.T [M]

adjacent circles. Suppose the radius of the inner circle is R1 and the radius of the small
surrounding circles is R2 (which will make the radius of the larger circle R1 + 2R2).

Then

sin
(180◦

n

)
=

R2

(R1 +R2)
,

and we can solve for R2:

R2 =
R1 sin( 180◦

n )

(1− sin( 180◦
n ))

.

The Geometer code below draws the figure (and a lot more besides). It includes a sort
of slider at the top to change the number of surrounding circles to be anything from 3
to 30. The point labeled n can slide between the pinned v1 and v2. The ratio is then
converted using the .f.rpn commands to a number n between 3 and 30. Then r2 is



6.12. DRAWING THE STEINER PORISM 119

calculated using the formula we obtained in the previous paragraph. (r1 is arbitrarily
set to be .4.)

Next, a macro is defined to draw circle number i. It finds the sine and cosine of the
angle 180◦(i/n) and multiplies them by the offset from the center,R1 +R2. These are
the coordinates for the center of the ith circle, and a circle of radius r2 is drawn around
that center.

Then 30 circles are drawn. The fact that fewer than 30 are needed doesn’t matter; if i
is too big, the circle corresponding to i will be drawn exactly on top of a previous one.

Note that since all the calculations are done in absolute coordinates, the circles will
all be centered at the origin of the drawing, in the exact middle of the drawing area.
This could be done differently, if desired. The final few lines of code draw the circles
that inscribe and circumscribe that ring of circles. These, of course, also need to be
calculated using the .f.rpn commands.

Finally, the listing is condensed from what Geometer would really put into its file—it
would put each of the macro calls to circ on a separate line. By condensing them,
you’re saved looking at a page of almost identical commands.

This code, of course, only draws the circles between a pair of concentric circles. Addi-
tional code is needed to draw the Steiner Porism, since each of these circles should be
inverted (which can be done most conveniently inside the macro). Then all the circles
but the inverted versions should be painted the invisible color so all that appears in the
Geometer diagram is the porism.

.geometry "version 0.2";

// Listing condensed by hand --

// all the calls to the circ macro were on different lines.

r1 = .f.rpn(0.400000);

v1 = .pinned(-1, 0.9, "3");

v2 = .pinned(1, 0.9, "30");

l1 = .l.vv(v1, v2);

v3 = .vonl(l1, -0.569395, 0.9, "n");

rat = .f.vvvratio(v1, v3, v2);

n = .f.rpn(rat, 27.500000, .mul, 3.500000, .add,

.truncate);

a = .f.rpn(180.000000, n, .div);

r2 = .f.rpn(a, .sin, .dup, 1.000000, .exch,

.sub, .exch, r1, .mul, .exch,

.div);

.macro circ(.flt i)

{

x = .f.rpn(a, 2.000000, .mul, i, .mul,

.cos, r1, r2, .add, .mul);

y = .f.rpn(a, 2.000000, .mul, i, .mul,

.sin, r1, r2, .add, .mul);

v = .v.ff(x, y, .dot);

c = .c.vf(v, r2);

}

circ(0.000000); circ(1.000000); circ(2.000000);

circ(3.000000); circ(4.000000); circ(5.000000);

circ(6.000000); circ(7.000000); circ(8.000000);

circ(9.000000); circ(10.000000); circ(11.000000);



120 CHAPTER 6. TEACHER’S TUTORIAL

circ(12.000000); circ(13.000000); circ(14.000000);

circ(15.000000); circ(16.000000); circ(17.000000);

circ(18.000000); circ(19.000000); circ(20.000000);

circ(21.000000); circ(22.000000); circ(23.000000);

circ(24.000000); circ(25.000000); circ(26.000000);

circ(27.000000); circ(28.000000); circ(29.000000);

orig = .pinned(0, 0);

cin = .c.vf(orig, r1);

rout = .f.rpn(r1, r2, 2.000000, .mul, .add);

cout = .c.vf(orig, rout);

6.13 Apollonius’ Problem

Apollonius’ problem is to find three circles tangent to a given circle. This is done with
a series of inversions, and is a bit tricky to illustrate with a Geometer diagram.

C1C1
R1R1

C2C2

R2R2

C3C3

R3R3

Figure 6.13: The Problem of Apollonius
Teachers/Apollonius.T [M]

There are up to eight possible solutions, and in Figure 6.13 an example is shown where
all eight mutually tangent circles are shown.

The key idea is this: If we choose the circle of smallest radius and shrink it to a point,
and at the same time either add or subtract the radius of the smallest circle to or from
the radii of the larger circles, then solving Apollonius’ problem for a point and two
circles will yield a circle whose radius can be increased or decreased by the radius of
the smallest circle to yield a solution†.

Figure 6.14 demonstrates the general idea. The original circles for which the problem
is to be solved are centered at C1, C2, and C3, and they have radii R1, R2, and R3,
†There are direct solutions as well that involve moving the line or lines parallel to themselves by a distance

equal to the diameter of the smallest circle, just as we expand and shrink the diameters of the larger circles
in the three-circle solution.



6.13. APOLLONIUS’ PROBLEM 121

C1C1

C2C2

C3C3

R3+R1R3+R1
R1R1

R3R3

R2-R1R2-R1

R2R2

Figure 6.14: Addition and Subtraction of Radii
Teachers/Apollonius1.T [M]

respectively. Assume that R1 is the smallest of the three radii. One solution can be
obtained by drawing a circle centered at C2 of radius R2 −R1 and by drawing a circle
about C3 of radius R3 + R1. Using techniques we learned earlier in the chapter, we
can find a circle that is tangent to those new circles with the modified radii and passing
through C1 as shown in the figure. If that circle’s radius is then increased by R1,
we have one of the eight possible solutions to the problem of finding circles mutually
tangent to the three given circles.

Beware: This is trickier than it seems. Remember that there are up to four solutions to
the “two circles and a point” problem, possibly having tangencies on both sides of both
circles. Only one of these four circles can have its radius increased and still be tangent
to the original circles. In fact, if you play with the Geometer diagram that generates
Figure 6.13, you’ll find that it works only for a limited range of values around the
initial configuration—increase or decrease the radii too much and you’ll find that the
solutions jump to the other sides of circles, and on expansion or contraction of those
circles, they no longer solve the problem.

It took a lot of work to produce this Geometer diagram—the editor was used repeat-
edly. Clearly, it could have been done with standard construction techniques, but the
solution would have been hundreds of lines long. What follows is the complete code
for that diagram, but broken into chunks with some commentary following each chunk.

It is pretty clear from the names which lines were done using the mouse and which were
drawn with the editor. The mouse interface always makes up the same sorts of names,
like v1, v2, et cetera, for points, and c1, c2, . . . , for circles. Names like r2sub were
typed in the editor. Also, there are a huge number of items drawn in the “invisible”
color (.in). Typically, they were drawn in a color-coded way (internal tangents one
color, external in another, for example), and when they were no longer needed for the
construction, they were “erased” by turning them to an invisible color.

.geometry "version 0.2";



122 CHAPTER 6. TEACHER’S TUTORIAL

v1 = .free(0.169341, 0.542551, "C\sub{1}");

v2 = .free(0.348837, 0.44186, "R\sub{1}");

v3 = .free(0.392748, -0.401592, "C\sub{2}");

v4 = .free(0.51497, -0.101796, "R\sub{2}");

v5 = .free(-0.526167, 0.12827, "C\sub{3}");

v6 = .free(-0.436047, -0.180233, "R\sub{3}");

c1 = .c.vv(v5, v6);

c2 = .c.vv(v1, v2);

c3 = .c.vv(v3, v4);

r1 = .f.vv(v1, v2);

r2 = .f.vv(v3, v4);

r3 = .f.vv(v5, v6);

r2sub = .f.rpn(r2, r1, .sub);

r3sub = .f.rpn(r3, r1, .sub);

r2add = .f.rpn(r1, r2, .add);

r3add = .f.rpn(r3, r1, .add);

c3sub = .c.vf(v5, r3sub, .in);

c2sub = .c.vf(v3, r2sub, .in);

c3add = .c.vf(v5, r3add, .in);

c2add = .c.vf(v3, r2add, .in);

The code above draws the three initial circles, and it assumes that the radius r1 is the
smallest of the three radii. r1 is added and subtracted from each of the other two radii
and four circles are constructed centered at the same places as the other two circles, but
with radii increased or decreased the appropriate amount.

v7 = .free(0.365897, 1.00522, .in, "7");

c4 = .c.vv(v1, v7, .in);

c5 = .c.ccinv(c2add, c4, .in);

c6 = .c.ccinv(c3add, c4, .in);

l2 = .l.ccext(c6, c5, 2, .in, .longline);

l3 = .l.ccext(c6, c5, 1, .in, .longline);

c7 = .c.ccinv(c3sub, c4, .in);

c8 = .c.ccinv(c2sub, c4, .in);

l21 = .l.ccext(c7, c8, 2, .in, .longline);

l31 = .l.ccext(c7, c8, 1, .in, .longline);

l1 = .l.ccint(c7, c5, 2, .in);

l4 = .l.ccint(c7, c5, 1, .in);

l5 = .l.ccint(c8, c6, 1, .in);

l6 = .l.ccint(c6, c8, 2, .in);

An arbitrary circle of inversion c4 is drawn, and all four of the circles with modified
radii are inverted in it. The common external and internal tangents to various pairs of
those four circles are also drawn (after inversion, the center of the smallest circle went
to infinity, so inverted solution to Apollonius’ problem for two circles and a point will
be these four lines tangent to the inverses of the circles with modified radii).

c10 = .c.lcinv(l2, c4, .in);

c11 = .c.lcinv(l3, c4, .in);

c14 = .c.lcinv(l21, c4, .in);

c15 = .c.lcinv(l31, c4, .in);

c9 = .c.lcinv(l1, c4, .in);

c12 = .c.lcinv(l6, c4, .in);

c13 = .c.lcinv(l4, c4, .in);

c16 = .c.lcinv(l5, c4, .in);



6.13. APOLLONIUS’ PROBLEM 123

The tangent lines are inverted to find solution circles going through the center of C1

and tangent to the circles with modified radii.

v8 = .v.ccenter(c9, .in, "I");

v9 = .v.ccenter(c12, .in, "J");

v10 = .v.ccenter(c13, .in, "K");

v11 = .v.ccenter(c16, .in, "L");

v12 = .vonc(c9, -0.474808, -0.263661, .in, "M");

v13 = .vonc(c12, 0.0527364, -0.175382, .in, "N");

v14 = .vonc(c13, -0.103302, -0.0870917, .in, "O");

v15 = .vonc(c16, 0.0408249, -0.602817, .in, "P");

rad1 = .f.vv(v8, v12);

rad11 = .f.rpn(rad1, r1, .sub);

cf1 = .c.vf(v8, rad11);

rad2 = .f.vv(v9, v13);

rad22 = .f.rpn(rad2, r1, .add);

cf2 = .c.vf(v9, rad22);

rad3 = .f.vv(v10, v14);

rad33 = .f.rpn(rad3, r1, .add);

cf3 = .c.vf(v10, rad33);

rad4 = .f.vv(v11, v15);

rad44 = .f.rpn(rad4, r1, .sub);

cf4 = .c.vf(v11, rad44);

The centers and points on the radii of four of the circles are found. From these, the
radii can be determined, and r1 can be added or subtracted as appropriate, and the new
final circles can be found.

v16 = .v.ccenter(c11, .in, "Q");

v17 = .v.ccenter(c15, .in, "R");

v18 = .v.ccenter(c14, .in, "S");

v19 = .v.ccenter(c10, .in, "T");

v20 = .vonc(c11, -0.00771487, 0.608311, .in, "U");

v21 = .vonc(c15, -0.347598, 0.492195, .in, "V");

v22 = .vonc(c14, -0.314278, 0.371898, .in, "W");

v23 = .vonc(c10, 0.261844, 0.534324, .in, "X");

rad5 = .f.vv(v16, v20);

rad55 = .f.rpn(rad5, r1, .sub);

cf5 = .c.vf(v16, rad55);

rad6 = .f.vv(v17, v21);

rad66 = .f.rpn(rad6, r1, .add);

cf6 = .c.vf(v17, rad66);

rad7 = .f.vv(v18, v22);

rad77 = .f.rpn(rad7, r1, .sub);

cf7 = .c.vf(v18, rad77);

rad8 = .f.vv(v19, v23);

rad88 = .f.rpn(rad8, r1, .add);

cf8 = .c.vf(v19, rad88);

The operation above is repeated on the final set of four circles.



124 CHAPTER 6. TEACHER’S TUTORIAL

6.14 ��Apollonius’ Point

Apollonius’ Point of a triangle is defined to be the common intersection of the three
lines connecting the points of a triangle with the points of tangency of the three excir-
cles with their circumscribing circle. See Figure 6.15. Construct a Geometer diagram
that shows this point for an arbitrary triangle4ABC.

AA

BB

CC
PP

Figure 6.15: The Apollonius Point
Teachers/ApolloniusPt.T [M]

If we use the solution to Apollonius’ problem in the previous section to obtain the cir-
cumscribing circle, we are faced with the problem that the construction there required
the knowledge of which of the circles was the smallest. Not only that, but if there are 8
possible circles tangent to the three excircles, which one is the one that circumscribes
them?

Feuerbach’s Theorem comes to our aid, however. Feuerbach’s Theorem states that the
nine-point circle of a triangle is tangent to the three excircles of the triangle (and to the
incircle as well, but that doesn’t matter to us here).

If we can find an inversion that takes the excircles into themselves, the nine-point circle
will be inverted to be the required tangent circle. Circles are inverted to themselves by
any circle that is orthogonal to them. The circle orthogonal to all three excircles has its
center at the radical center of the three circles, and we can find its radius by drawing a
tangent to any of the circles from the radical center and using that point of tangency as
a point on the diameter of the required circle.

So how do we find the radical center? It is the intersection of any pair or radical axes
of pairs of the circles. The radical axis is easy to construct if the two circles intersect,
but in this case, we know that none of the pairs do. So the usual trick is to find a
circle that passes through both circles, to find the radical center of those three (the
two non-intersecting circles and the one that intersects them both), and that point will



6.14. ��APOLLONIUS’ POINT 125

lie on the radical axis. Then choose another circle that intersects both and find the
radical center for those three. That will be another point on the radical axis of the two
non-intersecting circles. With two points on the radical axis, we can construct it.

There are a couple of strategies for finding a circle that intersects pairs of circles. Per-
haps the easiest would be to find a circle that passes through their centers and through
any other point, but then we’d need two pairs of such circles. This will work fine, but
the solution here is to find two circles that intersect all three of the excircles so they
can be used to find both of the radical axes. One circle that’s guaranteed to work is
the one that passes through the three circle centers. Another is obtained by taking the
nine-point circle and making it a tiny bit larger so that it intersects all three. Remember
that it is tangent to the three, so making it a tiny bit larger will cause it to intersect the
three. In the construction here, it is 10% larger.

Once we have the circle orthogonal to all three circles, invert the nine-point circle
through it, and it is the required outer tangent circle.

But now we need to find those points of tangency, and using the circle-circle intersec-
tion method is risky—due to numerical round-off, the circles might miss by a millionth
of an inch and there will be no intersection. The easiest thing to do is to connect the
centers of the circles with lines (which will pass through both circles perpendicularly),
and find the intersections of those lines with the circles.

Here is the code that does the construction interleaved with a discussion of how it
works. The vast majority was constructed with the Geometer GUI, but obviously a
text editor was used from time to time.

It may be easier to follow this with the Geometer diagram displayed on the screen. If
the meaning of any of the invisible points doesn’t make sense, open the diagram with
the text editor, change the invisible point to some obvious color, and redisplay.

.geometry "version 0.40";

v1 = .free(-0.158683, 0.0718563, "A");

v2 = .free(0.00299401, 0.374251, "B");

v3 = .free(0.149701, 0.122754, "C");

l1 = .l.vv(v1, v2, .longline);

l2 = .l.vv(v2, v3, .longline);

l3 = .l.vv(v3, v1, .longline);

c2 = .c.lll(l1, l2, l3, 2);

c3 = .c.lll(l2, l1, l3, 2);

c4 = .c.lll(l1, l3, l2, 2);

v27 = .v.ccenter(c3, .in);

v28 = .v.ccenter(c2, .in);

v29 = .v.ccenter(c4, .in);

The code above makes the triangle, draws the three excircles, and finds their centers.
The centers are needed to make one of the circles that passes through all three of the
excircles.

v4 = .v.vvmid(v1, v2, .in);

v5 = .v.vvmid(v2, v3, .in);

v6 = .v.vvmid(v3, v1, .in);



126 CHAPTER 6. TEACHER’S TUTORIAL

c5 = .c.vvv(v4, v5, v6, .in);

v9 = .v.ccenter(c5, .in);

r = .f.vv(v9, v6);

r1 = .f.rpn(r, 1.100000, .mul);

c6 = .c.vf(v9, r1, .in);

c7 = .c.vvv(v27, v28, v29, .in);

Circle c5 is the nine-point circle (we know that the nine-point circle passes through
the three midpoints of the sides). Then r is the radius of the nine-point circle, and we
multiply it by 1.1 to get a new radius for a slightly larger circle centered at the same
point (v9, the center of the nine-point circle), but guaranteed to intersect all three. c6 is
that larger circle, and c7 is the circle passing through the centers of all three excircles.

v7 = .v.cc(c7, c2, 2, .in);

v8 = .v.cc(c7, c2, 1, .in);

v10 = .v.cc(c3, c7, 2, .in);

v11 = .v.cc(c3, c7, 1, .in);

v12 = .v.cc(c2, c6, 1, .in);

v13 = .v.cc(c2, c6, 2, .in);

v14 = .v.cc(c3, c6, 2, .in);

v15 = .v.cc(c3, c6, 1, .in);

Here are the eight intersections of the circles passing through all three excircles with
the excircles themselves.

l4 = .l.vv(v11, v10, .in, .longline);

l5 = .l.vv(v7, v8, .in, .longline);

v16 = .v.ll(l4, l5, .in);

l6 = .l.vv(v14, v15, .in, .longline);

l7 = .l.vv(v13, v12, .in, .longline);

v17 = .v.ll(l6, l7, .in);

l8 = .l.vv(v16, v17, .in, .longline);

v18 = .v.cc(c4, c7, 2, .in);

v19 = .v.cc(c4, c7, 1, .in);

v20 = .v.cc(c4, c6, 1, .in);

v21 = .v.cc(c4, c6, 2, .in);

l9 = .l.vv(v21, v20, .in, .longline);

v22 = .v.ll(l9, l7, .in);

l10 = .l.vv(v18, v19, .in, .longline);

v23 = .v.ll(l5, l10, .in);

l11 = .l.vv(v22, v23, .in, .longline);

v24 = .v.ll(l11, l8, .in);

This is the construction of the radical center. Two pairs of radical axes are made for
each of two pairs of excircles, their intersections are found to get two points on the
radical axis of each pair of excircles, and then the radical axes are intersected at v24
which is the radical center of the three excircles.

l12 = .l.vc(v24, c2, 2, .in, .longline);

v25 = .v.lc(l12, c2, 2, .in);

c1 = .c.vv(v24, v25, .in);

c8 = .c.ccinv(c5, c1);



6.15. MAKING ANIMATED GIFS FROM A SCRIPT 127

v25 is the point of tangency of a line from the radical center to one of the excircles.
c1 is the circle of inversion, and c8 is the inverted nine-point circle that is the exterior
tangent of the three excircles.

v26 = .v.ccenter(c8, .in);

l13 = .l.vv(v26, v29, .in, .longline);

l14 = .l.vv(v26, v28, .in, .longline);

l15 = .l.vv(v26, v27, .in, .longline);

v30 = .v.lc(l15, c8, 2);

v31 = .v.lc(l14, c8, 2);

v32 = .v.lc(l13, c8, 2);

Finally, the centers of the excircles and the center of the surrounding circle are con-
nected with lines that are intersected with the various circles to get the exterior points.

l16 = .l.vv(v2, v32);

l17 = .l.vv(v1, v31);

l18 = .l.vv(v3, v30);

v33 = .v.ll(l16, l17, "P");

.text("Apollonius Point: If the points of tangency

of the three excircles and their circumscribed

circle are connected to the opposite vertices of

a triangle, those lines are concurrent at

Apollonius’ Point.", .l0);

Those exterior points are connected to the vertices of the triangle, and the point of
Apollonius is found. There’s also a short chunk of text to describe the construction.

6.15 Making Animated GIFs from a Script

This example uses Adobe Photoshop and Adobe ImageReady in combination with Ge-
ometer to produce an animated GIF that illustrates Miquel’s Theorem. This particular
example was made with the Photoshop CS and ImageReady CS versions of those pro-
grams. Other programs exist that let you patch files together to make animated GIFs,
so this is only one way to go.
After messing around for a while, the following script seems to illustrate the theorem
nicely:

.geometry "version 0.62";

t = .script(0.000000, 360.000000, 10.000000);

v0 = .free(-0.658683, -0.110778, .in);

x0 = .f.vxcoord(v0);

y0 = .f.vycoord(v0);

x1 = .f.rpn(t, .sin, 0.200000, .mul, x0, .add);

y1 = .f.rpn(t, .cos, 0.400000, .mul, y0, .add);

v1 = .v.ff(x1, y1);

v2 = .free(0.763473, 0.682635);

v3 = .free(0.350299, -0.724551);

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);



128 CHAPTER 6. TEACHER’S TUTORIAL

l3 = .l.vv(v3, v1);

v7 = .free(-0.999, 0.999, .dot);

v8 = .free(0.999, 0.999, .dot);

v9 = .free(0.999, -0.999, .dot);

v10 = .free(-0.999, -0.999, .dot);

v44 = .free(0.00299401, -0.0149701, .in);

x44 = .f.vxcoord(v44);

y44 = .f.vycoord(v44);

x4 = .f.rpn(t, .sin, 0.300000, .mul, x44, .add);

y4 = .f.rpn(t, .cos, 0.050000, .mul, y44, .add);

v4 = .v.ff(x4, y4, .in);

l4 = .l.vlperp(v4, l2, .in);

l5 = .l.vlperp(v4, l1, .in);

l6 = .l.vlperp(v4, l3, .in);

v5 = .v.ll(l1, l5);

v6 = .v.ll(l2, l4);

v11 = .v.ll(l3, l6);

c1 = .c.vvv(v5, v6, v2);

c2 = .c.vvv(v6, v11, v3);

c3 = .c.vvv(v11, v5, v1);

We would like the script to illustrate the theorem with a series of triangles that change
in a cyclical manner so that the animation can run and run with no apparent disconti-
nuities.

Miquel’s theorem states that for an arbitrary triangle, if three points are selected on
the edges and if circles are drawn through each vertex and the selected points on the
adjacent lines, then those circles will be concurrent.

The Geometer diagram above moves the vertex v1 in an ellipse in 36 steps. The t is a
sort of angle going from 0 to 360 degrees.

In the first attempt at this example, the points were simply constrained to lie on the
edges of the triangle, but since they need to be re-projected to the lines after each
movement, there was no guarantee that they would end where they started, and they
usually did not. To fix this problem, it seemed like a good idea to select a point and drop
perpendiculars to the three sides to select the points, since then they would return to the
starting positions. Unfortunately, this point happens to be the point of concurrency of
the circles, and the animation was far less interesting with a fixed point of intersection.
Thus the code was modified to make the projection point v4 itself move in an ellipse
and this produced a suitable diagram.

The four vertices at the corners were useful for alignment in Adobe Photoshop.

Finally, the diagram above was not tested in the form above; the step size for t was
made much smaller so that the movement was slow enough to assure that for a given
arrangement of the starting points that none of the interesting parts of the figure left
the diagram. Finally, it was saved as a file called miquel.T. When the script above
is executed (after pressing the Script Print command), 36 files named miquel000.eps

through miquel035.eps were created.

Figure 6.16 shows four of the 36 files created, evenly spaced though the animation.

Next, a new Photoshop file with length and width 668 pixels at 72 pixels per inch was
created. This is the same size as the PostScript files generated by Geometer. A Photo-



6.15. MAKING ANIMATED GIFS FROM A SCRIPT 129

Figure 6.16: EPS Files Generated by a Script
Teachers/miquel.T [M]

shop action was created that opens a file, selects all, does a cut, goes to the other open
file, does a paste, then closes the original file. Using the Photoshop Batch command,
this action was applied to all 36 files generated by Geometer to create a Photoshop file
with 37 layers: the original plus the 36 pasted images from the Geometer output.

The original layer was deleted and the file was saved as miquel.psd which is imme-
diately opened in Adobe ImageReady. In the animation palette in ImageReady, the
“Make frames from Layers” command was issued, and the resulting animation was
saved as an animated GIF file called miquel.gif, which is included on the CD. Also
included is a sample web page, miquel.html that illustrates how to include an animated
GIF in html.



130 CHAPTER 6. TEACHER’S TUTORIAL



Chapter 7

Sleazy Hacks

The last time I wrote a book, the topic was computer graphics programming using the
OpenGL graphics library. There are a lot of tricks that can produce amazing results us-
ing OpenGL (but are not obvious or straight-forward), and to give the readers some idea
of what they are, I wanted to include a chapter entitled “Sleazy Hacks” that explained
the tricks of the graphics wizard.

Unfortunately, the book was written under the auspices of Silicon Graphics, and a chap-
ter named “Sleazy Hacks” didn’t resonate with the corporate big-wigs, so the chapter
title was changed to “Now That You Know”. I have no idea what that means.

There aren’t any corporate big-wigs associated with Geometer, so this chapter, since
it serves the same purpose as the corresponding chapter in the OpenGL book, has the
correct title.

Everything that Geometer can do is discussed in the tutorial chapters, but there are
lots of non-obvious ways that the commands can be used to produce interesting, high-
quality results.

Don’t try to read this chapter until you’ve used Geometer a bit and have a feeling for
what it can do, and what its deficiencies seem to be.

This chapter will provide some useful information, but probably your best source is to
look at all the demonstrations that come with this book. Whenever you see an effect
that you’d like to duplicate, all you have to do is to issue the Edit Geometry command,
and all the tricks will be revealed. Just stare at the Geometer code until you understand
what it does.

The information below is difficult to organize into a logical order, and for the most part,
the topics are completely independent, so skipping around in this chapter is probably
just as effective as reading it from beginning to end. On the other hand, the trick you
need may be almost anywhere, so it wouldn’t hurt to skim through the whole chapter to
see what’s there, and you can return for details later when you “need” the knowledge.

131



132 CHAPTER 7. SLEAZY HACKS

7.1 Drawing Tricks

7.1.1 Invisibility

You’ll be surprised how often you need to use a few steps to get from where you are
to where you want to be, and you don’t want people viewing your efforts to see the
intermediate steps. Remember that you can put all sorts of junk into your drawing to
get exactly what you want, and then change the color of all the unneeded things to
“invisible” afterwards. (Of course, your viewers can always click on the Show Invis
command to see what you did, but at least you can do the same thing to see how I
implemented the examples in this book.)

In fact, while you’re building a proof or construction, you may find that it is very useful
to work with the invisible items displayed—quite often the items that you’ve consigned
to be invisible will be very useful for future constructions.

Remember also that the color layer commands can allow you to use invisibility selec-
tively. For a complex construction, you may want to have some auxiliary line appear
at step 7 (where it’s really important), then to be visible for 2 steps, then to disappear
for the rest because it isn’t important. If the object in question happens to be the line
segment connecting v1 and v2, here’s how to do it:

line = .l.vv{v1, v2, [7 .in, .blink, 2 .white, .in]);

The line will be invisible for 7 steps, then when it first appears it will blink, highlighting
it’s importance. For two more steps it will be visible in white, and then it will disappear
for the remainder of the construction. (Remember that “step 7” is really the eighth step.
Step 0 is the first, step 1 is the second, and so on.)

Make points that aren’t free invisible if possible. Then the user won’t try to manipulate
them. Or you can pin them and draw them in the .black color.

7.1.2 Finding Things in the Editor

If you need to change a feature of a geometric object with the editor and your drawing
is complicated, temporarily change to color of the object in question using the graphical
user interface to some color that doesn’t otherwise appear in your diagram. Then it’ll
be easy to find in the editor. Later, you can change the color back to the correct one.

7.2 Geometer Draws the Wrong Thing

Often you’ll want to display a line segment, but the construction you use gives some-
thing different from what you want – the same line, but with different endpoints. With
this constructed line, you can often pick the points you want on it, connect those to
make the segment you want, and then make the original segment invisible.



7.2. GEOMETER DRAWS THE WRONG THING 133

For example, if you were trying to draw a square, and as part of your construction you
used a line parallel to a given line, the line parallel doesn’t have reasonable endpoints.
But you can find where that line hits the other edges using the LL=>P command, con-
nect them with another segment, and then paint the original long parallel line invisible.

A similar problem can occur with circles—if you draw the entire circle, the drawing
gets too cluttered. You need to use circles if you need to find their intersections with
lines or other circles, but the circles that are used for such things can be made invisible
later. If you need to show just a segment of a circle, draw an arc on top of the invisible
circle with a common center, but with endpoints that are appropriate to your diagram.
Remember the command .v.ccenter that will find the center of a given circle if you
don’t happen to know the center. That center point can also be made invisible, if
necessary.

There are other ways to make “invisible” points—paint them black, or draw them as
.nopoint, for example, but those points can be selected and manipulated by the user,
perhaps unintentionally. If you are preparing a drawing solely for use in publication,
this can be the way to go. The points that are black or of type .nopoint are invisible
in the drawing, but you can grab and move them with a mouse as you’re adjusting the
diagram before making the PostScript file that you need for something else.

7.2.1 The Wrong Segment

Suppose you’re drawing a Geometer diagram to illustrate some theorem that states
that three points, A, B, and C, lie on a line. Obviously you can draw a line through
the three, but if the diagram is cluttered, you’d really prefer just to draw a segment
connecting the outer two points, and the middle one will automatically be included.
But many theorems, although they do guarantee that the three points will lie on a line,
do not guarantee the order they will appear in.

The way around this is to draw three segments: AB, BC, and CA. Two of them will
always be unnecessary, but depending on the order of the points, you can’t know which
two, and the extra lines will never clutter up the drawing—there is always a line there
anyway.

The same idea could clearly be extended to more than three lines, but the number of
small segments you need goes up.

7.2.2 The Wrong Tangent

Geometer has a few commands that have multiple possibilities, and all of them have
to do with tangent lines. For example, the command that draws a tangent line from
a point to a circle is not well-defined—if the point is outside the circle, there are two
possibilities for this line.

What occurs internally is that Geometer solves the analytical equations for the line and
circle simultaneously, and looks for the solution that gives a tangent line. To do this
involves solving a quadratic equation, and if there are solutions, there are generally two



134 CHAPTER 7. SLEAZY HACKS

of them. (If the point is inside the circle, there are zero; if it is exactly on the circle,
there is one, and if it is outside the circle, there are two.)

From your high-school algebra class, you may remember that to solve the quadratic
equation:

ax2 + bx+ c = 0

you simply plug the numbers a, b, and c into the following equation:

x =
−b±

√
b2 − 4ac

2a
.

The “±” means that you can put in either a “+” or a “−” and each choice gives a
different answer. In the case of a point-circle tangent, one choice gives one line and the
other choice gives the other. Neither is a “preferred” answer.

What Geometer does is records which solution to use—the one with the + or the one
with the−, and depending on where you click on the circle, it chooses the tangent that
hits the circle closest to where you clicked on it. The problem, of course, is that when
you start moving around free points, the solution you want may suddenly switch to the
other one, and the tangent line in your diagram will jump to the other one.

There is no general solution to this problem, but it seems to be the case that extremely
often it is possible to include in your diagram both of the tangent lines. Then if the
desired solution suddenly flips to the opposite one, the two tangent lines in your figure
will flip to each other’s positions, and the viewer will notice nothing.

Sometimes you can solve the problem easily with one of the commands .v.lcvother
or .v.ccvother. These commands generate a point at the intersection of a line and
circle or of a circle and a circle that are guaranteed to be different from the given point.
If you need both intersections, there is no problem—click at both intersection points
and you’ll get the two different solutions. As you manipulate the figure they may flip,
but they will still both be visible.

A problem can arise if the intersection was derived by other means, and thus there’s no
way to know which solution Geometer will use. As an example, there’s a theorem that
states that if a circle intersects the three sides of a triangle in two points each, and if the
lines connecting the vertices of the triangle to one set of the points are coincident, then
the lines connecting the vertices to the other set will also be coincident. One way to
draw this would be to draw the three lines from the vertices through a common point,
and then to find their intersections with the edges of the triangle. Draw a circle through
those, and then find the other intersections of the circle with the sides. Unfortunately,
the points are defined as intersections of pairs of lines, so there is no way to know
which of the two solutions to the circle-line intersection problem is the “other” point.
.v.lcvother or .v.ccvother will solve the problem nicely.

As a concrete example, suppose you are trying to draw a diagram illustrating Poncelet’s
Theorem (see Figure 7.1). Poncelet’s Theorem has to do with a sequence of lines
starting on an outer circle that are tangent to an inner one, and finally intersecting the
outer circle at the next point. Sometimes, after some number of bounces like that (four
bounces in the figure), the line comes back to where it started.



7.2. GEOMETER DRAWS THE WRONG THING 135

AA

BB

CC

DD

Figure 7.1: Poncelet’s Theorem
Sleaze/Poncelet.T [M]

The “obvious” way to do this is to put pointA on the circle, then draw a line tangent to
the circle, extend that line to B, and do the same thing to make points C and D, finally
coming back to point A. But each time you construct the tangent, there’s a chance that
Geometer will get the wrong one when you start moving point A around the circle.

A good way to draw this figure is to draw both tangents from A, from which you can
find points B and D. From B and D, also draw both tangents, and so on. The final
resulting Geometer code is shown below, and if you play with the diagram, you’ll see
that there is no visible flipping. The lines are crazily flipping on and off, but each time
one flips to the other side, it’s partner flips over to replace it. Note that the numbers 1,
and 2 in the .l.vc commands indicates which solution Geometer is supposed to use,
and note that for every point-circle pair, both a 1 and a 2 are used.

.geometry "version 0.2";

v1 = .free(0.0479042, -0.0778443, .in);

v2 = .free(-0.458084, 0.51497, .in);

v3 = .free(0.161677, 0.0688623, .in);

v4 = .free(0.0538922, 0.562874, .in);

c1 = .c.vv(v1, v2);

c2 = .c.vv(v3, v4);

v10 = .vonc(c1, -0.659588, -0.404813, .magenta, "A");

l9 = .l.vc(v10, c2, 2, .magenta);

l10 = .l.vc(v10, c2, 1, .magenta);

v11 = .v.lc(l9, c1, 2, .magenta, "B");

l11 = .l.vc(v11, c2, 1, .magenta);

l12 = .l.vc(v11, c2, 2, .magenta);

v12 = .v.lc(l12, c1, 2, .magenta, "C");

l13 = .l.vc(v12, c2, 1, .magenta);

l14 = .l.vc(v12, c2, 2, .magenta);

v13 = .v.lc(l14, c1, 2, .magenta, "D");

l15 = .l.vc(v13, c2, 1, .magenta);

l16 = .l.vc(v13, c2, 2, .magenta);

You can get the wrong tangent line in many circumstances, and in most of them a trick



136 CHAPTER 7. SLEAZY HACKS

like the one above can be used to eliminate a display problem. Of course if you’re
just trying to figure out how to solve a problem and not trying to produce a beautiful
diagram to show a class to print in a book, you probably don’t care if the thing blinks—
it’ll show you what you want.

Other commands that have multiple solutions include the internal and external tangents
between two circles (two solutions each), the common tangent to three lines (four so-
lutions), the intersection of a line and a circle (two solutions), the tangents from a point
to a conic or the intersections of lines and conics.

AA BB

CC

Figure 7.2: Four Tangent Circles
Sleaze/Fourcircles.T [M]

The only one that causes significant problems is the circle tangent to three lines where
there are three possible solutions. See Figure 7.2. In the figure, one is called the incircle
and the other three the excircles of4ABC.

This time there are four solutions, and consequently Geometer puts a number between
1 and 4 in the .c.lll command. However, when you specify the command, if you click
on the lines in a different order, solution 1 for one ordering of the lines may be the same
as solution 3 for another ordering. Geometer blindly uses the lines in the specification
in the order they appear. For that reason, the following code segment works perfectly,
but to click it in with the mouse, you must be careful to click on the lines in the same
order each time. In this case, the order was line AB, then line BC, and finally line
CA. By clicking inside and outside 4ABC as appropriate, the correct circles were
selected. Note that in the code, the lines always appear in the same order: l1 followed
by l2, and finally l3.

.geometry "version 0.2";

v1 = .free(-0.288409, 0.313132, "A");

v2 = .free(0.122356, 0.391789, "B");

v3 = .free(0.0917666, -0.145702, "C");

l1 = .l.vv(v1, v2, .longline);

l2 = .l.vv(v2, v3, .longline);

l3 = .l.vv(v3, v1, .longline);

c1 = .c.lll(l1, l2, l3, 1);

c2 = .c.lll(l1, l2, l3, 3);



7.3. GEOMETER DEFICIENCIES AND APPARENT DEFICIENCIES 137

c3 = .c.lll(l1, l2, l3, 2);

c4 = .c.lll(l1, l2, l3, 4);

7.3 Geometer Deficiencies and Apparent Deficiencies

It is impossible to complete a program such as Geometer. Every time a new feature is
added, it becomes obvious that three additional features are also needed. It is a fairly
robust and useful program because it was used to draw all the illustrations in this book
and it was also used as an experimental tool for the author to discover his own proofs
of almost every theorem presented here.

Although no one would say Geometer is complete, it is also quite a bit more powerful
than it may seem at first. In this section we’ll talk about real deficiencies but also about
features that seem to be missing, but are in fact present.

7.3.1 Using Angles

It is too bad that angles are treated slightly differently from simple floating point num-
bers (flts) but there are reasons for that. If you give an angle a name, you’d like to
see that name drawn inside the angle opening, and if you give an flt a name, you’d
generally just like to see the value printed on the display. Another minor problem is
that angles can be expressed in Geometer either measured in degrees or radians. A flt

is just a flt.
Luckily, it is easy to convert among the two forms. If you’ve got an angle that you need
for a calculation, you can just use it as if it were a flt, and there’s a simple command
to turn flts back into angles. Here’s an example. Suppose you’re drawing a diagram
with a trisected angle, and let v1, v2, and v3 be the three points of the angle that’s to be
trisected. Here’s some code that will do the job:

ang1 = .a.vvv(v1, v2, v3);

a3 = .f.rpn(ang1, 3.000000, .div);

ang3 = .a.f(a3);

v4 = .v.avv(ang3, v1, v2);

l3 = .l.vv(v4, v2);

The .a.vvv makes the ang1 variable contain the angle determined by the three points,
which we can then use directly in the .f.rpn command to do a calculation on it (in this
case, divide it by 3 to trisect it). But the result of the .f.rpn command is a flt, so we
use the .a.f command to turn it back to an angle. That angle (ang3) can then be used
to construct other points and lines.

Another nasty problem is that angles are always directional. If you have an angle in a
variable and you’d like to use it to construct another side, the measurement is always
taken counter-clockwise relative to the central point. To make the problem concrete,
suppose you’d like to have a diagram with three free points that determine an angle,
and then you’d like to use two copies of that angle to be the base angles of an isosceles
triangle. So as you move your three vertices, the base angles change appropriately.



138 CHAPTER 7. SLEAZY HACKS

AA

BB CC DD EE

FF

Figure 7.3: Copying an Angle
Sleaze/Anglecopy.T [M]

Figure 7.3 shows what we want. We want to be able to move points A, B, and C, and
then use the resulting angle ∠ABC twice as the equal angles in an isosceles 4DEF ,
where DE is the base. Here is the complete code to draw that diagram, even though it
includes a bit of extra junk:

.geometry "version 0.2";

v1 = .free(-1.28394, 0.230712, "A");

v2 = .free(-1.65179, -0.871428, "B");

v3 = .free(-0.356492, -0.860066, "C");

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

ang1 = .a.vvv(v1, v2, v3, .noangle);

ang2 = .a.vvv(v3, v2, v1, .noangle);

v4 = .free(0.32695, -0.861679, "D");

v5 = .free(1.40373, -0.870804, "E");

l3 = .l.vv(v4, v5);

vx = .v.avv(ang1, v4, v5, .in);

vy = .v.avv(ang2, v5, v4, .in);

l4 = .l.vv(vy, v4, .in);

l5 = .l.vv(vx, v5, .in);

v6 = .v.ll(l4, l5, "F");

l6 = .l.vv(v6, v4);

l7 = .l.vv(v6, v5);

Only two lines were typed using the text editor—the ones that begin with vx = .v.avv

and vy = .v.avv. All the rest was created with the standard point and click interface.

If you try to use ang1 for both base angles, what will happen is that they will both take
off from the endpoints in the same direction—counter-clockwise from the endpoint.
For that reason, two versions of the same angle were made—ang1 and ang2 which
measure the same angle, but with opposite orientations. If one of them is 50◦, the other
will be 310circ. But going 50◦ counter-clockwise is the same as going 310◦ clockwise
so this will do exactly what you want.

7.4 Making Proofs or Constructions

If you want a demonstration where different information appears each time you press
the “next” button, draw your initial figure with all layers enabled. Then disable layer



7.5. MAKING SCRIPTS 139

0, and draw the next set of stuff, then disable layer 1 and draw the next set, and so on.

Use the .l1on, .l2on, ... commands to make something continue to appear to the end
of a proof. It’s not too hard to go in and edit the file by hand to do this, or if you hold
down the Ctrl key when you click on a layer button, it flips the state of all the following
layers.

Use .blink or .blink1 on steps of the proof that show a couple of lengths or angles
are equal. Or you can use two different blinking colors for more complicated items like
similar or congruent triangles.

7.5 Making Scripts

Somebody should write something for this someday. For now your best bet is to look
at all the files on the CD that use scripts and see how they work. You can examine
the text version of the files, and then load the files with Geometer to run them. Use a
search tool to look through all of the .T and .D files on the CD for those that contain
the text .script

7.6 Making Drawings for Publication

When you issue the command to make an “EPS” (Encapsulated PostScript) file, Ge-
ometer takes into account the current size and shape of the display area. It assumes that
the window’s x-dimension fills the page, and that the y-direction is relative to it. When
the EPS file is produced, it will be 400 points wide—a little more than 5 inches.

If you are going to make an EPS file that includes a smeared primitive, the picture will
probably look better if the smeared points or lines are more or less evenly spaced. For
that reason, instead of dragging the control point by hand, write a script that automati-
cally drags the control point in a uniform manner.



140 CHAPTER 7. SLEAZY HACKS



Chapter 8

Coordinate Systems

8.1 Barycentric Coordinates

Just for fun, here’s a Geometer program that finds a point, given its barycentric coor-
dinates.

BABA

BBBB

BCBC

AA

BB
CC

PP

Figure 8.1: Geometer Construction Given Barycentric Coordinates
Coordinates/Barymacro.T [M]

Figure 8.1 shows the Geometer diagram for one set of barycentric coordinates. Here
is the code that generates Figure 8.1:

.geometry "version 0.2";

v1 = .free(0.921847, 0.921847, .invisible, .circpoint);

v2 = .free(0.932504, -0.900533, .invisible, .circpoint);

l1 = .l.vv(v1, v2);

v3 = .vonl(l1, 0.927456, -0.0373089, .circpoint);

v4 = .vonl(l1, 0.929119, -0.321678, .circpoint);

l2 = .l.vv(v1, v3, "B\subscript{A}");

l3 = .l.vv(v3, v4, "B\subscript{B}");

141



142 CHAPTER 8. COORDINATE SYSTEMS

l4 = .l.vv(v4, v2, "B\subscript{C}");

v5 = .free(-0.477798, 0.708703, .circpoint, "A");

v6 = .free(0.513322, 0.225577, .circpoint, "B");

v7 = .free(-0.765542, -0.669627, .circpoint, "C");

l5 = .l.vv(v5, v6);

l6 = .l.vv(v6, v7);

l7 = .l.vv(v7, v5);

Lac = .f.vv(v5, v7);

Lab = .f.vv(v5, v6);

Ba = .f.vv(v1, v3);

Bb = .f.vv(v3, v4);

Bc = .f.vv(v4, v2);

Ra = .f.rpn(Lac, Bc, Ba, Bc, .add,

.div, .mul);

ca = .c.vf(v5, Ra, .invisible);

v8 = .v.lc(l7, ca, 1, .invisible);

Rb = .f.rpn(Lab, Ba, Ba, Bb, .add,

.div, .mul);

cb = .c.vf(v6, Rb, .invisible);

v9 = .v.lc(l5, cb, 1, .invisible);

l8 = .l.vv(v9, v7, .invisible);

l9 = .l.vv(v6, v8, .invisible);

v10 = .v.ll(l8, l9, .circpoint, "P");

l10 = .l.vv(v5, v10);

l11 = .l.vv(v10, v7);

l12 = .l.vv(v10, v6);

The user can change either the shape of triangleABC, or can change the relative sizes
of BA, BB , and BC by sliding the little markers on the vertical line on the right edge
of the diagram. The ratio of the lengths on the line on the right should be the same as
the ratio of the areas of the sub-triangles opposite vertices A, B, and C.

8.2 Trilinear Coordinates

A useful macro in Geometer, would be one that would generate a point given its tri-
linear coordinates. This can be a little tricky.

The most obvious approach is shown in Figure 8.2. Ignoring PA for a moment, every
point P whose distance from lines AC and AB is in the ratio PB : PC lies on the line
AP in the figure. Thus the required point must lie somewhere on this line. A similar
line can be constructed through either B or C, and the intersection of those two lines
will be at the point with the given trilinear coordinates.

Thus the line AP can be constructed if we can find a single additional point on it that
is different from A. For the particular pair of lengths PB and PC construct the lines
parallel to AC and AB at distances PB and PC , and those parallel lines will meet at a
point on the required line.

The details of such a Geometer construction are shown in Figure 8.3. Two arbitrary
points N and M are placed on the lines AB and AC, respectively. Perpendiculars to
the lines are constructed at those two points. Then circles of radii PB and PC are con-
structed centered atM andN . The intersections of those circles with the perpendicular



8.2. TRILINEAR COORDINATES 143

PCPC

PBPB

AA

BB

CC

PP

Figure 8.2: Finding P, given its trilinear coordinates
Coordinates/Construct.T [M]

lines are at points S and T which are at distances PB and PC from lines AC and AB,
respectively. If parallels to AB and AC are constructed through S and T , they must
meet in a point P such that the line AP includes all points having the correct PB : PC
ratio. If a similar line is constructed from either point B or C, the point satisfying all
the ratios of the given trilinear coordinates will be at the intersection of those two lines.
The Geometer code that generates the point P for the arbitrary choice of PB = 0.2
and PC = 0.3 is shown below. Larger values of PB and PC , (such as 2 and 3) would
work fine, but since Geometer’s coordinate system goes from roughly−1.0 to 1.0, the
circles would be so large that you probably wouldn’t even see them in the diagram.

.geometry "version 0.2";

v1 = .free(-0.886179, -0.589431, .circpoint, "A");

v2 = .free(0.853658, 0.800813, .circpoint, "B");

v3 = .free(0.845528, -0.589431, .circpoint, "C");

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

l3 = .l.vv(v3, v1);

Pb = .f.rpn(0.200000);

Pc = .f.rpn(0.300000);

Vac = .vonl(l3, 0.247967, -0.589431);

Vab = .vonl(l1, 0.00952314, 0.126294);

Cb = .c.vf(Vac, Pb);

Cc = .c.vf(Vab, Pc);

Lb = .l.vlperp(Vac, l3);

Lc = .l.vlperp(Vab, l1);

v4 = .v.lc(Lb, Cb, 2);

v5 = .v.lc(Lc, Cc, 2);

l5 = .l.vlpar(v4, l3, .longline);

l6 = .l.vlpar(v5, l1, .longline);

v6 = .v.ll(l5, l6, .circpoint, "P");

The problem with this construction is that there are two intersections of a line with a
circle, and this construction requires that the parallel lines be on the “inside” of the
triangle. But the code above may flip from one to the other as the vertices A, B, and



144 CHAPTER 8. COORDINATE SYSTEMS

AA

BB

CCMM

NN

TT

SS

PP

Figure 8.3: First Step of construction
Coordinates/Macro1.D [D]

C are moved. If you make an exact copy of this example in Geometer, and then turn
the triangle inside out by moving the point C across the line AB, the parallel lines will
stay on the same sides of AB and AC, and P will move outside the triangle.

Figure 8.4 shows an alternative approach. The angleA will be divided into two angles,
α and β by the line through P . Since PC and PB are perpendicular to the sides of
the triangles, sinα = PB/h and sinβ = PC/h. Since the same side h is included in
both triangles, we can solve for h in both of these equations and set them equal, giving
PB sinβ = PC sinα.

Since A = α+ β, β = A− α, so we have:

PB sin(A− α) = PC sinα.

Continuing by expanding sin(A− α) and doing some algebra, we get:

PB sinA cosα− PB cosA sinα = PC sinα

PB sinA cosα = (PC + PA cosA) sinα

PB sinA

PC + PB cosA
= tanα

arctan
( PB sinA

PC + PB cosA

)
= α

Once we have α we can construct the line through A making an angle of α relative to
the line AC, and do a similar thing from another vertex.

Using the construction above, here is the complete Geometer code to generate a point
P with given trilinear coordinates PA : PB : PC . It actually does a bit more than that,
and calculates all three lines through the vertices, and if you change l1, l2, and l3 to
be visible, you’ll see that they all do meet in a point, as required.



8.2. TRILINEAR COORDINATES 145

PCPC
PBPB

hh

ααββ
AA

BB

CCPP

MM

NN

Figure 8.4: First Step of construction
Coordinates/AltConstruct.D [D]

.macro .vertex trilinear(.vertex v1, .vertex v2, .vertex v3,

.flt f1, .flt f2, .flt f3)

{

ang1 = .a.vvv(v3, v1, v2, .invisible);

ang2 = .a.vvv(v1, v2, v3, .invisible);

ang3 = .a.vvv(v2, v3, v1, .invisible);

a1 = .f.rpn(f2, ang1, .sin, .mul, f3,

f2, ang1, .cos, .mul, .add,

.atan2, .invisible);

a2 = .f.rpn(f3, ang2, .sin, .mul, f1,

f3, ang2, .cos, .mul, .add,

.atan2, .invisible);

a3 = .f.rpn(f1, ang3, .sin, .mul, f2,

f1, ang3, .cos, .mul, .add,

.atan2, .invisible);

A1 = .a.f(a1);

A2 = .a.f(a2);

A3 = .a.f(a3);

va1 = .v.avv(A1, v3, v1, .invisible);

va2 = .v.avv(A2, v1, v2, .invisible);

va3 = .v.avv(A3, v2, v3, .invisible);

l1 = .l.vv(v1, va1, .invisible);

l2 = .l.vv(v2, va2, .invisible);

l3 = .l.vv(v3, va3, .invisible);

.return v4 = .v.ll(l1, l2, .invisible);

}

8.2.1 Malfatti’s Problem

Using this macro to generate points given their trilinear coordinates it is possible to do
a lot of interesting constructions in Geometer even if you don’t know quite how to do



146 CHAPTER 8. COORDINATE SYSTEMS

them using standard techniques.

AA

BB

CC

B’B’
A’A’

C’C’

Figure 8.5: Malfatti’s Problem
Coordinates/Malfatti.T [M]

For example, Malfatti’s problem requires the construction of three circles within a tri-
angle that are tangent to each other, and so that one pair are tangent to the sides of the
triangle as in Figure 8.5.

This section would probably deserve a triple (or even quadruple!) black-diamond des-
ignation, but we’re going to cheat and use the observation that locations and sizes of
the three circles can be determined relative to the so-called “Ajima-Malfatti” points of
the triangle.

The first Ajima-Malfatti point has the following trilinear coordinates:

sec4(A/4) : sec4(B/4) : sec4(C/4).

The second Ajima-Malfatti point has these trilinears:

1

t2
+

1

t3
− 1

t1
:

1

t3
+

1

t1
− 1

t2
:

1

t1
+

1

t2
− 1

t3
,

where

t1 = 1 + 2[sec(A/4)cos(B/4)cos(C/4)]2

t2 = 1 + 2[sec(B/4)cos(C/4)cos(A/4)]2

t3 = 1 + 2[sec(C/4)cos(A/4)cos(B/4)]2.

The construction is accomplished because the points of common tangency of the circles
labeled A′, B′, and C ′ in Figure 8.5 satisfy the following conditions:

1. The lines AA′, BB′, and CC ′ are concurrent at the first Ajima-Malfatti point.



8.2. TRILINEAR COORDINATES 147

2. If A′′, B′′, and C ′′ are the centers of the excircles opposite A, B, and C, re-
spectively, then the lines A′A′′, B′B′′, and C ′C ′′ are concurrent at the second
Ajima-Malfatti point.

The rest of the details of the construction can be obtained by looking at the source code
for the Geometer diagram for Figure 8.5. The definition of the trilinear macro has
been removed from the listing below to save space:

v1 = .free(1.52239, -0.934328, "A");

v2 = .free(-1.86866, -0.19403, "B");

v3 = .free(1.00299, 0.874627, "C");

l1 = .l.vv(v1, v2);

l2 = .l.vv(v2, v3);

l3 = .l.vv(v3, v1);

ang1 = .a.vvv(v3, v1, v2, .in);

ang2 = .a.vvv(v1, v2, v3, .in);

ang3 = .a.vvv(v2, v3, v1, .in);

fa = .f.rpn(1.000000, ang1, 4.000000, .div, .cos,

.div, .dup, .dup, .dup, .mul,

.mul, .mul, 0.200000, .mul);

fb = .f.rpn(1.000000, ang2, 4.000000, .div, .cos,

.div, .dup, .dup, .dup, .mul,

.mul, .mul, 0.200000, .mul);

fc = .f.rpn(1.000000, ang3, 4.000000, .div, .cos,

.div, .dup, .dup, .dup, .mul,

.mul, .mul, 0.200000, .mul);

mf1 = trilinear(v1, v2, v3, fa, fb, fc, .in, "mf1");

c1 = .c.lll(l3, l2, l1, 2, .in);

c2 = .c.lll(l1, l3, l2, 2, .in);

c3 = .c.lll(l3, l1, l2, 2, .in);

v4 = .v.ccenter(c3, .in);

v5 = .v.ccenter(c1, .in);

v6 = .v.ccenter(c2, .in);

t1 = .f.rpn(1.000000, ang1, 4.000000, .div, .cos,

.div, ang2, 4.000000, .div, .cos,

.mul, ang3, 4.000000, .div, .cos,

.mul, .dup, .mul, 2.000000, .mul,

1.000000, .add);

t2 = .f.rpn(1.000000, ang2, 4.000000, .div, .cos,

.div, ang1, 4.000000, .div, .cos,

.mul, ang3, 4.000000, .div, .cos,

.mul, .dup, .mul, 2.000000, .mul,

1.000000, .add);

t3 = .f.rpn(1.000000, ang3, 4.000000, .div, .cos,

.div, ang2, 4.000000, .div, .cos,

.mul, ang1, 4.000000, .div, .cos,

.mul, .dup, .mul, 2.000000, .mul,

1.000000, .add);

T1 = .f.rpn(1.000000, t2, .div, 1.000000, t3,

.div, .add, 1.000000, t1, .div,

.sub);

T2 = .f.rpn(1.000000, t3, .div, 1.000000, t1,

.div, .add, 1.000000, t2, .div,

.sub);

T3 = .f.rpn(1.000000, t1, .div, 1.000000, t2,

.div, .add, 1.000000, t3, .div,

.sub);



148 CHAPTER 8. COORDINATE SYSTEMS

mf2 = trilinear(v1, v2, v3, T1, T2, T3, .in, "mf2");

l4 = .l.vv(v1, mf1, .in);

l5 = .l.vv(v2, mf1, .in);

l6 = .l.vv(v3, mf1, .in);

lla = .l.vv(v4, mf2, .in);

llb = .l.vv(v5, mf2, .in);

llc = .l.vv(v6, mf2, .in);

v7 = .v.ll(llc, l5, .green, "B’");

v8 = .v.ll(llb, l4, .green, "C’");

v9 = .v.ll(lla, l6, .green, "A’");

v10 = .v.vvvbisect(v3, v1, v2, .in);

v11 = .v.vvvbisect(v1, v2, v3, .in);

v12 = .v.vvvbisect(v2, v3, v1, .in);

l7 = .l.vv(v12, v3, .in);

l8 = .l.vv(v2, v11, .in);

l9 = .l.vv(v10, v1, .in);

l10 = .l.vvperp(v8, v7, .in);

l11 = .l.vvperp(v9, v8, .in);

l12 = .l.vvperp(v9, v7, .in);

v13 = .v.ll(l12, l9, .in);

c4 = .c.vv(v13, v7, .green);

v14 = .v.ll(l10, l7, .in);

c5 = .c.vv(v14, v8, .green);

v15 = .v.ll(l8, l11, .in);

c6 = .c.vv(v15, v8, .green);



Chapter 9

Quickstart Guide

This section contains the bare minimum of information to install and use Geometer
to view prepared files. The reference manual contains a tutorial chapter if you wish to
learn to draw your own simple diagrams.

Geometer only works on Windows 95/98/NT machines.

Load the CD into your drive and run the install script. By default, Geometer will
install into the directory C:/Geometer but you can put it elsewhere. All the interesting
files are in that installation directory which contains a file called README that describes
the arrangement of the installed files.

All Geometer diagrams are files whose name ends in .T or .D (the .T files are gener-
ally more interesting—they are theorems, and the .D files are simply drawings used in
documents). You can view any of them by double-clicking on the diagram’s icon.

Geometer diagrams consist of a points, lines, circles, and so on. The only thing you can
manipulate in the drawing area with a mouse are some of the points. (If it’s necessary
to have a movable line in a diagram, that line is usually a line going through two points,
and you can move one or both of the points to move the line. Similarly for all other
non-point objects.)

To move a point, use the mouse to move the cursor over a point. Press down on the
left mouse button, and move the mouse with that button held down. If that point is
movable, the diagram will shift appropriately.

Many diagrams present step-by-step proofs or construction. In those diagrams, you
can click on the Next button to advance to the next step of the proof/construction. You
can begin again by pressing Start or you can go back one step by pressing Prev (for
“previous”).

Even if the diagram is a proof or construction, you can still manipulate the points as you
step through. For example, suppose you get to a step in the proof that says, “Therefore,
points A, B, C, and D all lie on a circle.” If you don’t believe it, you can at this point
modify the drawing by moving points to see that in fact the four points do continue to

149



150 CHAPTER 9. QUICKSTART GUIDE

lie on a circle. Then once you’ve convinced yourself, you can continue with the proof
or construction.

Finally, some diagrams have scripts. If the Run Script button in the control panel is not
grayed-out, you can press it to run a prepackaged script. You can stop the running by
clicking in the drawing window, or by letting the script run to completion.

In most cases for the prepared diagrams discussed above, each screen will contain
instructions for how to proceed, like “Press ’Next’ to continue ...”, or “Press the ’Run
Script’ button.” Diagrams that are just used for drawings (generally having a .D suffix)
or that were obtained from other sources may or may not have good instructions, so in
those cases, you’re on your own.



Index

.a.f (command), 69, 84

.a.vvv (command), 84

.abs (command), 70, 80

.add (command), 70, 80

.arc.vvv (command), 84

.atan2 (command), 70, 80

.bez.vvvv (command), 83

.black (command), 79

.blink (command), 79

.blink1 (command), 79

.blink2 (command), 79

.blue (command), 79

.c.ccinv (command), 83

.c.lcinv (command), 83

.c.lll (command), 83

.c.vcrad (command), 83

.c.vf (command), 69, 83

.c.vv (command), 83

.c.vvv (command), 83

.c8,.c9,... (command), 79

.ceiling (command), 71, 80

.circpoint (command), 79

.clear (command), 71, 80

.conic.lllll (command), 84

.conic.vvvvv (command), 84

.copy (command), 71, 80

.cos (command), 70, 80

.cross (command), 79

.cyan (command), 79

.dashline (command), 78

.degreemode (command), 85

.diamond (command), 79

.display (command), 78, 80

.div (command), 70, 80

.dot (command), 79

.dotline (command), 78

.dslash1 (command), 79

.dslash2 (command), 79

.dslash3 (command), 79

.dup (command), 71, 80

.eq (command), 71, 80

.exch (command), 71, 80

.exp (command), 70, 80

.f.area (command), 69, 83

.f.rpn (command), 69, 83

.f.vv (command), 83

.f.vvvratio (command), 69, 83

.f.vxcoord (command), 69

.f.vycoord (command), 69, 83

.floor (command), 71, 80

.free (command), 80

.ge (command), 71, 80

.green (command), 79

.gt (command), 71, 80

.hashpoly (command), 79

.hashpoly1 (command), 79

.hashpoly2 (command), 79

.invisible (command), 79

.l.ccext (command), 82

.l.ccint (command), 82

.l.conicv (command), 82

.l.vc (command), 82

.l.vlpar (command), 82

.l.vlperp (command), 82

.l.vv (command), 82

.l.vvperp (command), 82

.l0, .l1, ... (command), 80

.l0on, ... (command), 80

.layercondition (command), 84

.le (command), 71, 80

.line (command), 78

.line0slash (command), 79

.line1slash (command), 79

.line2slash (command), 79

151



152 INDEX

.line3slash (command), 79

.log (command), 70, 80

.lt (command), 71, 80

.magenta (command), 79

.mod (command), 70, 80

.mul (command), 70, 80

.ne (command), 71, 80

.neg (command), 70, 80

.noangle (command), 79

.nomark (command), 79

.outlinepoly (command), 79

.pinned (command), 80

.plus (command), 79

.polygon (command), 84

.pop (command), 71, 80

.radianmode (command), 68

.rand (command), 70, 80

.ray (command), 78

.red (command), 79

.right (command), 79

.ring1 (command), 79

.ring2 (command), 79

.ring3 (command), 79

.roll (command), 71, 80

.round (command), 71, 80

.script (command), 83

.segment (command), 78

.sin (command), 70, 80

.slash1 (command), 79

.slash2 (command), 79

.slash3 (command), 79

.smear (command), 79

.soliddiamond (command), 79

.solidline (command), 78

.solidpoly (command), 79

.square (command), 79

.sub (command), 70, 80

.tan (command), 70, 80

.text (command), 85

.tol0, ... (command), 80

.truncate (command), 71, 80

.v.avv (command), 81

.v.cc (command), 81

.v.ccenter (command), 81

.v.ccvother (command), 82

.v.ff (command), 69, 81

.v.lc (command), 81

.v.lconic (command), 82

.v.lcvother (command), 82

.v.ll (command), 81

.v.lvmirror (command), 81

.v.vcinv (command), 81

.v.vrotate (command), 72, 82

.v.vscale (command), 72, 82

.v.vtranslate (command), 72, 82

.v.vvf (command), 69, 81

.v.vvmid (command), 81

.v.vvvbisect (command), 82

.v.vvvharmonic (command), 82

.v.vx (command), 74, 82

.v.vxcoord (command), 83

.vonc (command), 81

.vonconic (command), 81

.vonl (command), 81

.white (command), 79

.width (command), 78

.x.f9 (command), 74, 84

.x.identity (command), 74, 84

.x.rotate (command), 74, 84

.x.scale (command), 74, 84

.x.translate (command), 74, 84

.x.xxf (command), 74, 84

.yellow (command), 79
5L=>Con (command), 42
5P=>Con (command), 22, 42

angle display, 49, 78
angle styles, 79
angle type, 47
animated GIF, 127
APP=>P (command), 42
area, polygon, 49

blink color, 46

C=>P Ctr (command), 41
calculation, 68
Cancel Repeat Mode (command), 18
CC=>C Inv (command), 44
CC=>Ext Tan (command), 21
CC=>Ex Tan (command), 43
CC=>In Tan (command), 43



INDEX 153

CC=>P (command), 21, 41
circle

nine-point, 14
color

blink, 46
defining, 85
invisible, 45
smear, 46

colors, 45, 77
primitive, 79

command form, 59
commands

secret, 86
stack, 80

comment text, 58, 85
computer techniques, 36
coordinate system, 68
Ctr Edg=>C (command), 19, 43
Ctr PP=>C (command), 19, 43
cycle select, 45

defining colors, 78
Delete Geometry (command), 48
Describe Geometry (command), 49
Diagram Testing, 50
display angle, 49, 78
display length, 49, 78
Display Value (command), 49
Documentation (command), 54

Edit (command), 23, 48
Edit Geometry (command), 21, 24, 48,

58
Edit Name (command), 21, 48
Edit Preferences (command), 49
editor shortcuts, 85
execution stack, 70

File (command), 17
file format, 58
Flaubert, Gustave, 31
Flip Angle (command), 49
Free P (command), 17, 40
free point (command), 17

GEOMDOC (environ. variable), 2

GIF, animated, 127
Greek letters, 66

Help (command), 54

initial layers, 85
Insert (command), 48
invisible color, 45

layer colors, 65
layers, 62

initial, 85
LC=>C Inv (command), 44
LC=>P (command), 21, 41
LCC=>P Other (command), 42
LCon=>P (command), 42
LCP=>P Other (command), 42
length display, 49, 78
line styles, 79
line type, 47
line width, 47, 64
LL=>P (command), 41
LLL=>C (command), 44
LP=>P Mirror (command), 41

macros, 75
Malfatti’s problem, 145
Manipulation Mode, 18
math symbols, 66
matrix

rotation, 74
scale, 75
translation, 75

Miquel’s Theorem, 127

names, 80
external, 61
internal, 61

New (command), 17, 48
Next (command), 62
Next Step (command), 49
nine-point circle, 14
numbers, 68

Off (command), 62
Open (command), 48
options



154 INDEX

startup, 87

P on C (command), 40
P on Conic (command), 41
P on L (command), 40
P..P=>Poly (command), 44
PC=>L Tan (command), 43
PC=>P Inv (command), 41
PCon=>L Tan (command), 43
PC Rad=>C (command), 43
Pinned P (command), 41
PL=>L Par (command), 43
PL=>L Perp (command), 21, 43
Point (command), 20
point names, 21
point styles, 79
point type, 46
Point Names (command), 49
polygon area, 49
polygon styles, 79
polygon type, 47
PostScript, 48
PP=>L (command), 17, 21, 43
PP=>L Perp Bis (command), 43
PP=>P Mid (command), 18, 41
PP=>P mid (command), 21
PPP=>A (command), 42
PPP=>Arc (command), 44
PPP=>C (command), 43
PPP=>P Bis (command), 41
PPP=>P Harmonic (command), 42
PPPP=>Bez (command), 44
Prev (command), 62
Previous Step (command), 49
primitive colors, 79
primitive names, 61
Print (command), 48
Proof Finding, 50
properties, 60
property defaults, 60
Pólya, George, 11

Quit (command), 48
Quit-No-Save (command), 48

Reference Manual (command), 54

ReOpen (command), 48, 58
Repeat Mode, 18
reserved words, 59
reverse polish, 68
rotation matrix, 74
Rpt Set Color (command), 54
Run Script (command), 54

Save (command), 23, 48
Save As (command), 48
Save EPS (command), 48
scale matrix, 75
scripts, 76
Script Print (command), 77, 128
secret commands, 86
select

cycling, 45
selection, 45
Show Text (command), 54
Smear (command), 20
smear color, 46
special characters, 66
stack, 70
stack commands, 80
Start (command), 62
Start Proof (command), 49
styles

angle, 79
line, 79
point, 79
polygon, 79

subscripts, 67
superscripts, 67
symbols, 66

Testing Diagrams, 50
text, 65
text editor shortcuts, 85
Thompson, Fred, 13
Tip of the day, 12
Toggle Display Name (command), 62
Tool Tips (command), 54
transformation, 72
translation matrix, 75
Tristram, David, 57
Tutorial (command), 54



INDEX 155

Usage Tips (command), 54

variables, 59

width
line, 47, 64


